THE CONSERVATION OF ENERGY BEING AN ELEMENTARY TREATISE ON ENERGY AND ITS LAWS

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649554997

The Conservation of Energy Being an Elementary Treatise on Energy and Its Laws by Balfour Stewart

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

BALFOUR STEWART

THE CONSERVATION OF ENERGY BEING AN ELEMENTARY TREATISE ON ENERGY AND ITS LAWS

THE

CONSERVATION OF ENERGY

BEING AN ELEMENTARY TREATISE

ON ENERGY AND ITS LAWS

m

BALFOUR STEWART, M.A. LL.D. F.R.S.

PROPESSOR OF NATURAL PHILOSOPHY AT THE OWENS COLLEGE, MARCHESTER

WITH FOURTEEN LLUSTRATIONS

HENRY S. KING & Co.
65 CORNHILL & 12 PATERNOSTER ROW, LONDON
1873

STWYP,

YTTO VIANTYS DESTRUS MENDALI

(The rights of translation and reproduction are reserved.)

مالايو

PREFACE.

WE may regard the Universe in the light of a vast physical machine, and our knowledge of it may be conveniently divided into two branches.

The one of these embraces what we know regarding the structure of the machine itself, and the other what we know regarding its method of working.

It has appeared to the author that, in a treatise like this, these two branches of knowledge ought as much as possible to be studied together, and he has therefore endeavoured to adopt this course in the following pages. He has regarded a universe composed of atoms with some sort of medium between them as the machine, and the laws of energy as the laws of working of this machine.

The first chapter embraces what we know regarding atoms, and gives also a definition of Energy. The various forces and energies of nature are thereafter enumerated, and the law of Conservation is stated. Then follow the various transmutations of Energy, according to a list, for which the author is indebted to Prof. Tait. The fifth chapter gives a short historical sketch of the subject, ending with the law of Dissipation; while the sixth and last chapter gives some account of the position of living beings in this universe of Energy.

The Owens College, Manchester, August, 1873.

TABLE OF CONTENTS.

CHAPTER I.

WHAT IS ENERGY?

							ARTICLE		PAGE
Our Ignorance of Individuals		+		E.		93	1-4	in	1
In the Organic World	8		i,		30		6, 6	ii.	3
In the Inorganic World		V.		3		-	7-9		5
Activity of Molecules							10, 11	4	7
Action and Reaction, Equal and	Opp	osi	te.						
Riestrated by a Vessel of	af Go	ldf	ish		20		12		8
" by a Rifle .				40		*	13, 14	***	9
" by a Falling	Ston	ıe	9		2.		15, 16		11
The Rifle further considered .		33		9.8		23	17		12
The Rifle Ball possesses	Ene	rgy	0		4		18	***	13
Definition of Energy		•		1		3	19		13
Energy is proportional t	ю М	MH	(tel)				20		14
It is not simply proporti	lacco	to	Ve	loci	ty	290	21, 22		14
Definition of Work .	(¥)		65		180		23		15
Rule for measuring Wor	k	2		80		52	24	253	16

TABLE OF CONTENTS.

Particular Superior III			ARTICLE		PAGE
Relation between Velocity and Energy.	6				
Definition of Velocity .	20	200	25	172	16
Kilogramme Weight shot upward	в .		26, 27	***	17
. Energy proportional to Square of	Veloc	it y	28	***	19
Examples	66.		29	***	20
Resistance and Buoyancy of A	tmosp	here			
Disregarded	a disa	- 19	30	191	20
Energy independent of Direction	of M	otion	31		21
Other Forces besides Gravity .		20	32, 33	***	21
¥ (1)					
CHAPTE	Я П.				
MECHANICAL ENERGY AND I	TS CE	IANGI	INTO H	EAT	
Energy of Position.					
A Stone high up			34	3370	23
A Head of Water	3 8	9.	85	131	24
A Cross-bow bent-a Watch woo	ind up		36	996	25
Advantage of Position .	90	133	37	(60)	26
Transmutations of Visible Energy.					
A Kilogramme shot upwards	32	1120	38		27
A Kilogramme descending		66	39	***	28
Velocity in the Inclined Plane	- 57	æ.	40, 41	555	28
Functions of a Machine.					
A Machine merely transmutes En	ergy	(**)	42	2000	30
This Illustrated by a Set of Pull-	вув		42	300	30
,, by a Hydrostatic	Press	6 (a)	43	544	32
Principle of Virtual Velocities (What	we gai	n in			
power we lose in space).	0.00				
First clearly defined by Galileo			44	3727	33

TABLE OF CONTENTS.			ix
	ARTICLE	80	PAGE
Illustrated by a Lever	44	222	34
" by an Inclined Plane .	45	+++	34
What Friction and Percussion do.			
Friction converts Energy into a less useful			
Form	46	777	35
Percussion does the same	47	100	36
When Friction and Percussion destroy			
Motion, Heat appears	48	444	37
Heat a species of Motion.			
Davy's Experiments	4951	***	38
Rumford's Experiments	52	seete.	39
Argument derived from these	63—65		39
Heat a Backward and Forward Motion.			
A Heated Substance not in Motion as a whole	56	100	41
Analogy between Heat and Sound	57	100	42
Mechanical Equivalent of Heat,	10		
Heating Effects proportional to Energy .	58	525	43
Joule's Experiments	5961	199	44
Value of Heat unit	62	(2)	46
There are other Varieties of Energy	63	***	47
CHAPTER III.			
THE FORCES AND ENERGIES OF N	ATURE :		
THE LAW OF CONSERVATION	S.		
Connexion between the Energies and Forces of			
Nature	64	***	48
Forces of Nature enumerated.			
(1) Gravitation: its Law of Action	65	***	48