NOTES ON HEAT AND STEAM

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649467952

Notes on Heat and Steam by Charles H. Benjamin

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

CHARLES H. BENJAMIN

NOTES ON HEAT AND STEAM

Trieste

1 . . . Loser

1

NOTES ON

HEAT AND STEAM

BY CHARLES H: BENJAMIN, M.E. PROFESSOR OF MECHANICAL ENGINEERING CASE SCHOOL OF APPLIED SCIENCE

THIRD EDITION COPYRIGHT BY C. H. BENJAMIN 1905 1965 CHARLES H. HOLMES. PUBLISHER 303 RUCLID AVE. CLEVELANT

HE REW YORK 63875A A THE FROM ALL

٠

√*∪* 536--- B468

NOV 1 7 1905

٠,

194 96 60 10 NGARAN DATE

Preface to Third Edition.

N PREPARING THIS EDITION for the press, many of the chapters have been re-written and considerable new matter has been added.

The chapter on fuels has been made more complete and the subject of chimneys receives special consideration.

The principal addition has been the chapter on gas engines and refrigerating machines.

The temperature-entropy diagram is used quite freely in discussing heat processes, as being the only logical method of treating thermo-dynamic problems.

Credit should be given to Mr. Frederick H. Sibley for the preparation of many of the drawings used in illustrating this edition.

It is hoped that the absence of "padding" in this little treatise may commend itself to those who seek information.

De 60710

~ -× \$2

-1

7

Contents.

Chapter 1.

MEASUREMENT OF	HEAT.	Page			
Temperature.	Air thermomete	r. Absolute zero,	0.000		
Unit of heat.	Latent heat.	Heating of water.			
Transfer of hea			1-8		

Chapter 2.

COMBUSTION AND FUEL—Fuels: Gas and Coal. Process of combustion. Evaporative power of coal. Smoke prevention. Mechanical stokers. Temperature of fire. Rate of combustion. Examples. . 9–18

Chapter 3.

CHIMNEYS.

Chapter 4.

THERMODVNAMICS.

Examples. Examples. Efficiency of heat engine. Examples. 25-42

Chapter 5.

STEAM.

Saturation and superheat. Steam curves. Entropy of water and of steam. Indicator diagrams and heat diagrams. Condensation. Wet steam. Superheating. Efficiency, Clearance. Consumption of coal and water. Flow of steam. Flow in long pipes. Theory of injectors. Examples. Tables. 43-66

Chapter 6.

AIR, GAS AND REFRIGERATION CVCLES, Air compressor. Hot air engines. Gas engine cycles. Diesel engine. Refrigerating machinery. Unit of refrigeration. Actual performance. Examples, 67-87

127

Index.

Absolute Zero Adiabatic Curve Expansion Air, Compressor Engine Carbon, Combustion of Chimneys, Capacity of Draft of Height of			• •		:		1		:	1	ŀ	1	:	Ċ	•	28
Expansion Air, Compressor Engine Carbon, Combustion of Chimneys, Capacity of Draft of Height of			• •		:				+						2	. 28
Expansion Air, Compressor Engine Carbon, Combustion of Chimneys, Capacity of Draft of Height of			• •		:											
Air, Compressor Engine . Carbon, Combustion of Chimneys, Capacity of Draft of Height of			•	÷	÷.				1.00	1.0						. 27
Engine Carbon, Combustion of Chimneys, Capacity of Draft of Height of		•••	•			120	÷.			8	82	3				. 67
Carbon, Combustion of Chimneys, Capacity of Draft of Height of		1		•		13	5	3		с.	2	8	d.	33	Ξ.	68
Chimneys, Capacity of Draft of Height of	•		*											•	1	. 16
Height of		14		10	З.,	10		- 13	•	1	1	4	1	*		. 20
Height of	•		•			•		•	•					•		
		2	23	1		1	2	5	1	1	\mathbf{T}		13	•	1	. 19
																. 22
Clearance			+					1								. 55
Coal, Composition of	\mathbf{x}	10	\mathbf{x}_{i}	÷	ie)		18	\mathbf{E}	÷	1		*	•	+		. 13
Consumption	ž.	Q.,	-83	3	4			-	•							. 57
Evaporative power		4														. 10-12
Varieties of		2		4	1	22	а.	-2		ς.					S.,	. 10
Combustion			2		1		1	1	1				2		÷.	. 9
Heat of																. 10
Process of	5	ΩĒ.,	1			8	3	- 32	1		1	0	-31	0	Ξ.	12
Rate of														•	7	. 17
Compressor, Air	۰.	۰.	1		٠	•	1	1	•	٠.	*	1	1	•	1	
Condensation		0	1		٠	1		- 80	×.	÷.	23	12	1	۰.	1	. 67
									040		4	+		•	÷	. 48
Cycle, Carnot									œ		\mathbf{t}	25				. 32-39
Diesel											1				-	. 75
Gas engine											•			•		, 70
Refrigeration							а.				4			*		. 78
Diagrams, Heat	۰.		41	Ξū.		4	4	-13				14				
Indicator			4.1							÷ 4	·				4	6-54-76
Diesel Engine		1	12		87			2		÷.	2	2	1		1	. 74
Efficiency, Gas Engine																. 72-74
Heat Engine	ŝ.	1	13													. 38
Refrigerating	8	÷.	- 22	10		2	۰.	-33	15	Я.	23	3	31		9	. 82
Steam Engine																. 58
Entropy of gas															8.	- 31
Steam																
Water					-				•		•		٠.	+	*	
	22	۰.	- 53	•	8	13	1	•	٠	1	2		•	۰.		· 45
Errors of Indicator																
Expansion, Adiabatic	٠	٠.	۰.			2°	2	٠	٠		٠	٠	•	•	÷.	27-28
Isodynamic	1		÷			•	•	٠		3	1	8.	٠	•		- 35
Isothermal	22	÷.	1			10	4			÷.	20	1	20		2	5-27-38
Work of Fall of Temperature Fire, Temperature of .	•		\dot{z}^{2}	e.		100		\sim			12	æ		æ	÷.	. 28
Fall of Temperature		2									į.	1			3	. 29
Fire, Temperature of .		2	1		2		2				1			2	1	. 16
Flow of steam		Ξ.	1	0	÷.	33		3			0	2	1	6	Е,	. 38-60

Andex, continued.

8

*D

Fuels, Comparison of Composition of .	6		ð,	*	•	5	٩.	*	2		٠	3	•	1	1	0	•	1
Composition of .	10	÷	•	•	•	•	. • .	3.8	<u>*</u> :	*		10	-	41	041	14	+	8 4
Evaporative power	0	a		20	12	*	1	12	22	1	1	•					5	- 2
Varieties of	•	•	-	-	+				*					4			÷	1 1
Gas Engine, Cycle .		4		4		а.							2	1			÷	7
Efficiency	60		÷.	10	100	10	1910	0¥						\mathbf{r}	- 40	÷.		7
Fuels	2	12	а.	- 27		1		÷.	12		÷.	1	÷.		1	S.,	ŝ	i
Heat, Definition														1	1			
Diagram												39	8	8	٥.	÷.,	1	3
Engine			5	2		1	12	88	- 5	÷.		12	5	1	*	•	1	3
Engine					•		ore.	-	+						-			
Equations for		52	S	52	25	10	15	3	- 83	20	۰.		٠	-81	10	1	3	33-3
Internal, Change of	ы	•	9	£1				ंस	÷			•		+	0.		8	3
In Steam					.*									- 24			٠	4
Latent									13								÷	
Quantity of		4	÷.	23	÷.,		4		- 23	a.,		-	4	1		1.		1 3
Specific	100	-						1.4	10				1.0	10		1.1		
Total in gas														2	2	1	3	3
Transfer of																	1	4-
Unit of														1	1	8	ð	- 7
Height of Chimney															8	÷.	3	2
																	+	
									51									
Indicator, Diagrams .																		40-5
									8	•		2			•			
Injectors		•	1		$\sim 10^{-10}$		30		*	÷	-	÷	14	± 1	a.		÷	61-6
Internal work	23	22		\hat{x}	4	1	1	4			÷.	13					4	2
Isothermal Curve													-					2
Expansion													9		92	S.,	3	25-3
	3					Ċ.											3	2
Latent Heat								•	•		-					÷.	1	- 6
	1		1	1	•	1	12		-20	ð.,	٠	1	1	5		÷.	ž	
																	٠	5
						2			\mathcal{D}	Ζ.	1	23	3		27.		*	I
Peat									÷.)	4					4		٠	9-1
Pipes, Flow in							45	+	¥2	4		4	4	20				6
Pressure, Atmospheric							122	28		-		345	14	41	90	2	\mathbf{v}	
Constant	10	÷.,		1		2		÷.	-	4	4			12			4	3
Of Draft			Ξ.	1			2	÷2.	2	÷.			÷.			۰.		. 1
Of Gas									1	99			3	1			3	
Rate of Combustion .																	8	1
	-					ĩ.												7
						1		1	- 63	÷.	S.,	1		1	•	8	3	- 8
									-83	8	•	*	*	1	1	-	*	
Machinery									•	8	6	٠		*		9	8	7
Performance							÷		23		•	٠	÷.				ž	8
Unit						i.	÷	4	÷	4	•				4		4	
Smoke Prevention								÷.	\mathbf{v}				a.	\mathbf{r}_{i}		12		1
Specific Heat								4	12	2	ñ	1					4	
									- 62			19	2	10		1	3	56-5
						÷		- C.						5			2	4
Curves																	- 72	

Index, continued.

Entropy Flow of	3	÷	13	×.		ŧ.	*	•	32	3	52	æ	÷					45
Flow of	-	1	10	123	÷.	-					1	×.	э.				- 5	8-60
Steam, Heat in Injector Saturated	-			le.		22				11			۰.		4		•	43
Injector	4	12	1			1	+	-2	4	а.	-23				÷.	+	, 6	1-63
Saturated			12	12	1	1		12		ų	-	-		1		2	÷.	43 .
Superheated Wet																	. 5	2-53
Wet	12	22	- 23		1	- 20	57	- 2	4	а.	- 23			1	2	12	<u>ر</u> ۳	50
Stokers, Mechanical		1	3		2	12				8		1	1		22		1	15
Temperatures. Equal	1	12	1		З.	-33	30	1	3	Ы.	- 23	2	2					ĭ
Temperatures, Equal Absolute	12	83	- 33	8	1	- 1	8	- 3		÷.	- 23	5	3	legel.	8	33	3	2
Of: Chimney																		21
Of Expansion	- 2	83	- 5			1	1	1	÷.	8	1	ં			13.	20	6	26
Of Fire	-3	1	1	1	2	- 2	1	1	8	8	\$	1		۰	÷.	13	8	16
Thormal Perintance			1			- 8	1	1	*	•		-		•				5
Thermal Resistance . Thermodynamics	1	1	- 5		1	1	1	-8		Ľ.	1	1		•		1		25
Thermodynamics	-	. *		00	- 1			-		0.	•	24			- 4	40	or -	23
First Law Second Law Thermometer, Air	- 53	35	- 52	12	12	23	1		*	3	51	1	٠		12	33	1	25
Second Law		94	÷								4		12	٠		÷	• 3	1-39
Thermometer, Air		24		•	-	4			÷.					+	+			2
Transfer of Heat Unit of Heat		ίœ.	10		10		18	\overline{C}		3	÷	1		÷.	22	\mathbf{x}	28	4-7
Unit of Heat	1		÷.			2	1	- 2	2				÷	1		+	8	3
Of Refrigeration	14	-	+-		1.4			+		1.			τ.	14				80
Of Refrigeration Volume, Constant Of Gas			-	1	÷.			2					- 22			Â.		34
Of Gas	-	4	2		14	1	22	-2			12	1	2	4	۰.	ş	1	3
Water, Entropy of .							-					-				-		45
Water, Entropy of . Evaporation of .			- 21	12	23	83	23	- 8	83	1	15		- 8	23		15	S .	
Heating of							11	- 3	27	- 3	1	2	- 3		1		÷.	76
Heating of . Work, Internal and I	2-	ter	m	1	2	1	0	- 5		- 3	- 25	1	3	1	1	1		26
Zero, Absolute					1	a t	1	4	17	÷	1	C.		2	-	4	16	2
sero, recourse		- +	+		1						-	1.14						-

52

.