GEOLOGICAL SERIES, VOL. V. NO. 4. AN EXCURSION TO THE GRAND CANYON OF THE COLORADO

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649431946

Geological Series, Vol. V. No. 4. An Excursion to the Grand Canyon of the Colorado by W. M. Davis

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

W. M. DAVIS

GEOLOGICAL SERIES, VOL. V. NO. 4. AN EXCURSION TO THE GRAND CANYON OF THE COLORADO

MC ユ

MAY 29 1901 /4,964

Bulletin of the Museum of Comparative Zoology AT HARVARD COLLEGE. Vol. XXXVIII.

GEOLOGICAL SERIES, Vol. V. No. 4.

AN EXCURSION TO THE GRAND CANYON OF THE COLORADO.

By W. M. DAVIS.

WITH TWO PLATES

CAMBRIDGE, MASS., U.S.A.: PRINTED FOR THE MUSEUM. : May, 1901.

MAY 29 1901

No. 4. — An Excursion to the Grand Canyon of the Colorado. By W. M. Davis.

TABLE OF CONTENTS.

	TAGE FAGE
Introduction	108 The West Kaibab Faults 142
Itinerary	110 The Toroweap Fault 142
Summary of Previous Work	110 The Sevier Fault Southwest of
Newberry	111 Pipe Spring 143
	112 Topographic Effects of Fault-
Dutton	ing obliterated or reversed
The Rock Series	115 by Erosion 145
Local Names, Maps, etc	115 The Hurricane Fault 146
The Great Denudation	118 The Grand Wash Fault 147
Two Cycles of Denudation	118 The Western Monoclinal Flexures 148
The Mature Valleys of the Kai-	The Displacements of the High
hab and Coconino Plateaus .	120 Plateans 150
The Landslides of Vermilion and	Origin of the Drainage System . 151
Echo Cliffs	121 General Explanation by Antece-
The Migration of Certain Divides	128 dence : 161
Divide near Pipe Spring	125 Replacement of Antecedence by
Relation of the Pipe Spring	Other Explanations 152
Divide to the Pipe Spring	The Smaller Streams of the
Fault	128 Grand Canyon District 158
The Cedar Ridge Divide under	The Streams of the San Rafael
Echo Cliffs	129 Swell 154
Migrating Divides in Arid Re-	The Summit Valleys of the
gions	130 Kaibab 155
The Permian Scarps under the	The Origin of the Colorado in
Shinarump Cliffs	122 the Grand Canyon District . 158
	188 The Geological History of the
Perched Boulders	134 Region 159
Spors and Ravines	184 The Effect of the Flexures . 160
The Stripped Plateaus	186 The Effect of the Faults 161
Dates of Displacements	139 The Bends of the Grand Canyon 164
The Eastern Flexures	189 Speculative Character of the
The Earliest Flexures	139 Preceding Sections 166
The Kaibab and the Echo	The Erosion of the Grand Canyon , 167
	140 The Canyon Cycle 167
The Crags of Echo Cliffs	141 Comparison of Glen and Marble
The Western Faults	142 Canyons 167
man amazana an d	

	9 9 5556
7100	2142
Stage of Development of the	Relation of the Esplanade to
Canyon 168	the Toroweap Fault 184
Rapids in the Canyon 168	Conclusion as to the Origin of
Junction of Trunk and Branch	the Esplanade 185
Streams 169	Hints for a Visit to the Canyon. 180
The Geological Section in the	Former Climates of the Grand Can-
Canyon Wall 171	yon District 187
The Two Unconformities 173	Diverse Opinions of Early Ob-
Correlation of Water Streams	servers 187
and Waste Streams 176	Moist Miocene and Arid Plio-
Cirques, Cusps, and Niches . 178	cene Climates 188
The Esplanade 180	The Toroweap 189
Two Theories of the Esplanade 181	The Pluvial Equivalent of the
Comparison of the Kaibab and	Glacial Period 192
the Kanab Sections 181	Volcanic Phenomena 192
Eastward Fading of the Ec-	Summary 195
planade 182	Bibliography 197
Relation of the Inner and Outer	Explanation of Plates 201
Canyons 183	

Introduction.

In June, 1900, it became possible for me to visit the district of the Grand Canyon of the Colorado, and to see upon the ground the wonderful features of a region that had long been familiar from the reports of our governmental surveys. Our party consisted of Prof. R. E. Dodge of Teachers' College, Columbia University, Prof. H. E. Gregory of Yale University, Mr. R. L. Barrett of Chicago, Mr. Richard Wetherill of Pueblo Bonito, N. M., Dr. Tempest Anderson of York, England, and the writer. We reached Flagstaff, Arizona, by the Santa Fe Western Railroad on June 3, spent twenty-three days travelling irregularly across country, and went out from Milford, Utah, to Salt Lake City by a branch of the Oregon Short Line on June 26. Our itinerary is shown on the accompanying outline map, Figure 1, with dates of camps, and in the list of camps given below. We travelled partly in wagon, partly on horseback, and averaged about twenty-five miles a day. The clouds of thunder showers were frequently seen in the distance, but we had rain only twice; first a few drops in the canyon, June 7, and next a brisk shower near the Little Colorado crossing on the morning of June 10; the centre of this shower passed north of us, and the muddy streams from its short-lived down-pour met us as we were ascending a dry arroyo, or "wady." Many days were almost cloudless and oppressively hot over noon. The nights were cool, with the exception

of one that we spent near the bottom of the canyon, which was unpleasantly warm. A brief report upon our trip has already been published in the "American Journal of Science," for October, 1900.

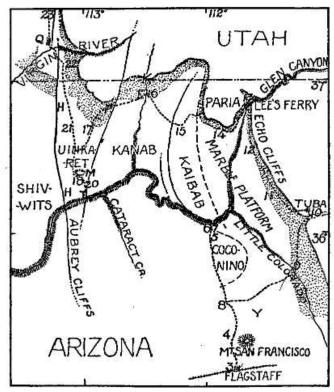


FIGURE 1.

Route-map of Grand canyon district. The dotted belt represents the weak lower Triassic and Permian strata separating the masozoic area on the northeast from the palaeozoic area on the southwest. The several blocked plateaus are separated by faults (continuous lines) or flexures (broken lines). The route followed is marked by a fine broken line, with numbers to indicate dates of camps in May, 1900. F, Fredonia; H, H, Hurricane ledge and fault; K, Kanab; M, Mt. Trumbull; P, Pipe spring; Q, Tequerville; T, Toroweap valley; Y, recent lava mess. Outline taken from Dutton's Atlas.

ITINERARY. - June 4th, 1900, Flagstaff northward to Stokes spring, at northwest base of San Francisco mountain; 5th, northward to the Coconino forest, within four miles of Hance's on the canyon rim; 6th, descended from Cameron and Berry's Hotel by Grand View trail into canyon and spent the night at the level of the lower Tonto shales ; 7th, returned to Cameron and Berry's; 8th, southward to Hull's spring on road to Flagstaff; 9th, northeastward to Little Colorado river at crossing of road from Flagstaff to Tuba; 10th, northward to Tuba; 11th, northward along base of Echo cliffs to Cottonwood tanks; 12th, still northward along Echo cliffs to Tanner's tanks; 13th, still northward along Echo cliffs, crossing the Colorado river at Lee's Ferry; 14th, southwest to Jacob's pools under the Vermilion cliffs of the Paria plateau; 15th, west to Jacob's lake on the Kaibab plateau; 16th, northwest to Fredonia; 17th, westward to Pipe spring and southwestward to Yellowstone spring near Antelope valley; 18th, southwestward to Trumbull spring at southern base of Mt. Trumbull; 19th, ascended Mt. Trumbull, then southward to Oak spring; 20th, southward to Vulcan's throne in the Toroweap, and back to Oak spring; 21st, northward to Clay holes; 22nd, northward to Gould's (Workman's) spring; 23rd, northward past Toquerville to Kelsey's ranch; 24th, northward past Cedar City to Rush lake; 25th, northwest to Minersville; 26th, northwest to Milford; night train to Salt Lake City.

SUMMARY OF PREVIOUS WORK.—An account of new observations made in such a district as that of the Grand Canyon of the Colorado, already well studied by the explorers of our western surveys, naturally lays more emphasis on novel interpretations of former observations or on subordinate matters newly observed, than on the great structural features of the region or on the principal events of its history. But whatever of novelty is now to be gleaned in that marvellous region must rest so immediately on the work that has been already done there that I wish at the outset to express the great indebtedness that all of our party felt to the pioneer work of Newberry, Powell, Gilbert, Dutton, and Holmes, whose labors have transformed a desert wilderness into classic ground for the geologist, and whose reports are quoted whenever it is desired to illustrate all that is marvellons in the way of displace-

¹ Trumbull spring is on the slope of the mountain several hundred feet above its base: at the time of our visit it gave very little water. The place is not to be recommended as a camping ground. Oak spring, four miles further south, is much better.

ment and denudation. The topographical maps prepared by Bodfish and Renshawe in 1879 are also of great service to the traveller. The main conclusions of the earlier explorers are not to be disputed. The great unconformities at the base of the plateau series, the enormous volume of nearly horizontal and conformable strata from lower Palæozoic to Tertiary, the division of the region into great blocks by displacements, either faults or flexures, trending about north and south, the great denudation by which the plateaus bordering the canyon have been stripped of thousands of feet of strata, the sharp erosion by which the canyon has been incised in the plateaus, and the superb development of volcanic phenomena, — all these great features are standard examples for citation. There are, however, certain subordinate conclusions announced in the earlier reports which seem open to question, and it is chiefly to a consideration of these debatable points that the present essay is devoted.

The following brief summary of certain aspects of the work of three earlier observers may be of service to the reader.

Newberry, geologist of the Ives expedition to the Colorado river of the west in 1857-58, ascended the Grand Wash cliffs to the plateaus from the deserts among the Basin ranges on the south of the river, descended northward into the Grand canyon near its western end by the side canyon of Diamond creek, and, ascending again, traversed the southern plateaus past San Francisco mountain from west to east. He recognized the fundamental crystalline rocks beneath their heavy unconformable cover of palæozoic strata (pp. 54-58); he perceived the importance and efficacy of ordinary erosive processes not only in the excavation of the narrow canyons beneath the plateaus by the larger and smaller streams (pp. 45, 46), but also in the broad recession of the cliffs upon the plateau (pp. 45, 62), indeed he regarded the opening of the broad upland valleys on the plateaus, such as that of the Little Colorado, as "a much grander monument of the power of aqueous action than even the stupendous cañon of the Colorado" (p. 86). He noted a "slight arching of the strata" in passing from what we may now call the southern Shivwits to the southern Uinkaret plateau (p. 58), and a "curve of the underlying rock" on descending from the Coconino plateau (south of the Kaibab) to the platform of the Little Colorado valley (p. 61); but he denied the occurrence of other displacements, not only in the canyons but also along the north-south escarpments, saying that "the strata of the table-lands are as entirely unbroken as when first deposited" (p. 46); and this is not unreasonable

when it is remembered that his route led him across the southern plateaus where the great displacements weaken and disappear as they come down from the north. He did not demand two periods of erosion for the sculpture of the plateaus and the narrow canyon; difference of resistance in the upper and lower strats seemed to him to account for these contrasts in the amount of destructive work (p. 62), but he inferred a more active erosion in former times than at present; "everything indicates that the table-lands were formerly much better watered than they now are" (p. 47, also pp. 62, 76).

Powell in his adventurous expedition down the canyon (1869) and in his journey over the northern plateaus (1870), discovered the double unconformity in the Kaibab section of the Grand canyon (a, pp. 212, 213), gave many new details concerning the rock series, and emphasized the production of the canyons by erosion in his announcement of the "antecedent" origin of certain rivers (p. 163). He presented a clear account of the great displacements by faults and flexures which divide the Grand canyon district into huge "blocks," trending north and south (a, pp. 185-190, Figure 73), as well as of the great cliffs of erosion or retreating escarpments, north of the canyon, facing south and trending irregularly east and west (a, pp. 190, 191, Figure 74); "the cliffs of erosion are very irregular in direction, but somewhat constant in vertical outline; and the cliffs of displacement are somewhat regular in direction, but very inconstant in vertical outline" (a, p. 191). Powell does not seem to have felt the necessity of supposing an uplift of the region between the great denudation of the uplands and the incision of the narrow canyons (pp. 206, 213), but he states that "the carving of the caffons . . . is insignificant when compared with the denudation of the whole area, as evidenced in the cliffs of erosion" (a, p. 208). The date of the displacements is not very sharply defined; when the great denudation began "there were no faults and no benches" (a, p. 200). The first displacements occurred after the erosion of valleys had been begun, the displacements were long continued, and must have been slower than the erosion of valleys by the principal streams, for the displacements did not modify the stream courses (a, p. 201). "Though the entire region has been folded and faulted on a grand scale, these displacements have never determined the course of the streams. . . . All the facts concerning the relation of the water-ways of this region to the mountains, hills, cañons, and cliffs lead to the inevitable conclusion that the system of drainage was determined antecedent to the faulting and folding" (a, p. 198). The