# AN ELEMENTARY TREATISE ON THE DIFFERENTIAL CALCULUS FOUNDED ON THE METHOD OF RATES OR FLUXIONS

Published @ 2017 Trieste Publishing Pty Ltd

#### ISBN 9780649053926

An Elementary Treatise on the Differential Calculus Founded on the Method of Rates Or Fluxions by John Minot Rice & William Woolsey Johnson

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

## JOHN MINOT RICE & WILLIAM WOOLSEY JOHNSON

# AN ELEMENTARY TREATISE ON THE DIFFERENTIAL CALCULUS FOUNDED ON THE METHOD OF RATES OR FLUXIONS



0

## **ELEMENTARY TREATISE**

ON THE

## DIFFERENTIAL CALCULUS

FOUNDED ON THE

## METHOD OF RATES OR FLUXIONS

BY

#### JOHN MINOT RICE

PROPESSOR OF MATHEMATICS IN THE UNITED STATES MANY

AND

#### WILLIAM WOOLSEY JOHNSON

PROFESSOR OF MATHEMATICS IN SAINT JOHN'S COLLEGE ANNAPOLIS MARVLAND

ABRIDGED EDITION

NEW YORK

JOHN WILEY AND SONS

15 ASTOR PLACE
1888

## EducT188.80.744

Form 7 188.80

W 13 1895 Tarrae fund 300.8

> Copyright, 1880, JOHN WILEY AND SONS.

JUN (20 19)7 LIGHTER RED TO

New York : J. J. Little & Co., Printers, 10 to 20 Autor Place.

## PREFACE.

In preparing this abridgment of their treatise on the Differential Calculus, the authors have endeavored to adapt it to the wants of those instructors who find the larger work too extensive for the time allotted to this subject.

> J. M. R. W. W. J.

Annapolis, Maryland,
August, 1880.

:

## CONTENTS.

#### CHAPTER I.

## Functions, Rates, and Derivatives,

| L                                                   |      |
|-----------------------------------------------------|------|
|                                                     | PACE |
| Functions                                           |      |
| Implicit functions                                  |      |
| Inverse functions                                   | 4    |
| Classification of functions                         | 4    |
| Expressions involving an unknown function           |      |
| Examples I                                          | 6    |
| п.                                                  |      |
| Rates                                               | g    |
| Constant rates                                      | 10   |
| Variable velocities                                 | II   |
| Illustration by means of Attwood's machine          | II   |
| The measure of a variable rate                      |      |
| Differentials                                       | 12   |
| The differentials of polynomials                    | 13   |
| The differential of mx                              | 14   |
| Examples II                                         | 15   |
| III.                                                |      |
| The differentials of functions                      | 16   |
| The derivative—its value independent of dx          | 17   |
| The geometrical meaning of the derivative           | 19   |
| Examples III                                        | 21   |
| CHAPTER II.                                         |      |
| THE DIFFERENTIATION OF ALGEBRAIC FUNCTIONS.         |      |
| IV.                                                 |      |
| The square                                          | 23   |
| The square root                                     | 25   |
| TOTAL (2012년 1일 |      |

| 44                                                                          |      |
|-----------------------------------------------------------------------------|------|
| v.                                                                          | PAGE |
| The product                                                                 | 29   |
| The reciprocal                                                              | 30   |
| The quotient                                                                | 31   |
| The power                                                                   | 32   |
| Examples V                                                                  | 34   |
| CHAPTER III.                                                                |      |
| THE DIFFERENTIATION OF TRANSCENDENTAL FUNCTIONS.                            |      |
| VI.                                                                         |      |
| The logarithm                                                               | 37   |
| The Naplerian base                                                          |      |
| The logarithmic curve $(y = \log_{x} x)$                                    | 40   |
| Logarithmic differentiation                                                 | 41   |
| Differentials of algebraic functions deduced by logarithmic differentiation | 42   |
| Exponential functions                                                       | 43   |
| Examples VI                                                                 | 44   |
| VII.                                                                        |      |
| Trigonometric or circular functions                                         | 47   |
| The sine and the cosine                                                     |      |
| The tangent and the cotangent                                               | 49   |
| The secant and the cosecant                                                 | 50   |
| The versed sine                                                             | 50   |
| Examples VII                                                                |      |
| VIII.                                                                       |      |
| Inverse circular functions—their primary values                             | 54   |
| The inverse sine and the inverse cosine                                     |      |
| The inverse tangent and the inverse cotangent                               | 57   |
| The inverse secant and the inverse cosecant                                 | 58   |
| The inverse versed-sine                                                     | 59   |
| Examples involving trigonometric reductions                                 | 59   |
| Examples VIII                                                               |      |
| IX.                                                                         |      |
| Differentials of functions of two variables.                                | 62   |
| Examples IX                                                                 |      |
| Miscellaneous examples of differentiation                                   |      |
| 그는 그 기를 마스터를 내용 바다 전경에서 10 이번 오는 이 경기 하는 그 것이다고 있다고 있어 있다면 하게 되었다면 것이다.     | 0.05 |

#### CHAPTER IV.

#### SUCCESSIVE DIFFERENTIATION.

| X.                                                      | PAGE     |  |  |  |
|---------------------------------------------------------|----------|--|--|--|
| Velocity and acceleration                               | 67       |  |  |  |
| Component velocities and accelerations                  | 69       |  |  |  |
| Examples X                                              | 70       |  |  |  |
| XI.                                                     |          |  |  |  |
| Successive derivatives                                  | 73       |  |  |  |
| The geometrical meaning of the second derivative        |          |  |  |  |
| Points of inflexion                                     | 73<br>74 |  |  |  |
| Successive differentials                                | 75       |  |  |  |
| Equicrescent variables                                  | 75       |  |  |  |
| Examples XI                                             | 76       |  |  |  |
|                                                         |          |  |  |  |
| CHAPTER V.                                              |          |  |  |  |
| THE EVALUATION OF INDETERMINATE FORMS.                  |          |  |  |  |
| XII.                                                    |          |  |  |  |
| Indeterminate or illusory forms                         | 79       |  |  |  |
| Evaluation by differentiation                           |          |  |  |  |
| Examples involving decomposition.                       |          |  |  |  |
| Examples XII                                            | 82<br>84 |  |  |  |
| XIII.                                                   |          |  |  |  |
|                                                         |          |  |  |  |
| The form $\frac{\omega}{\omega}$                        | 87       |  |  |  |
| Derivatives of functions which assume an infinite value | 89       |  |  |  |
| The form 0-00                                           | 90       |  |  |  |
| The form ∞ -∞                                           |          |  |  |  |
| Examples XIII                                           | 91       |  |  |  |
| xiv.                                                    |          |  |  |  |
| Functions whose logarithms take the form o ·∞           | 93       |  |  |  |
| The form 1 to                                           | 93       |  |  |  |
| The form 0°                                             | 94       |  |  |  |
| Examples XIV                                            | 95       |  |  |  |

#### CHAPTER VI.

#### MAXIMA AND MINIMA OF FUNCTIONS OF A SINGLE VARIABLE.

| XV.                                                      | PAGE |
|----------------------------------------------------------|------|
| Conditions indicating the existence of maxima and minima | . q  |
| Maxima and minima of geometrical magnitudes              |      |
| Examples XV                                              |      |
| XVI.                                                     |      |
| Method of discriminating between maxima and minima       | 10   |
| Alternate maxima and minima.                             |      |
| The employment of a substituted function                 |      |
| Examples XVI                                             |      |
| XVII.                                                    |      |
| Employment of derivatives higher than the first          | . IO |
| Complete criterion for a maximum or a minimum            | . 11 |
| Infinite values of the derivative                        |      |
| Examples XVII                                            | . II |
| Miscellaneous examples of maxima and minima              | . 11 |
| CHAPTER VII.                                             |      |
| THE DEVELOPMENT OF FUNCTIONS IN SERIES.                  |      |
| XVIII.                                                   |      |
| The nature of an infinite series                         | 110  |
| Convergent and divergent series                          | 12   |
| Taylor's theorem                                         |      |
| Lagrange's expression for the remainder                  |      |
| The binomial theorem                                     | 120  |
| Examples XVIII                                           | 12   |
| XIX.                                                     |      |
| Maclaurin's theorem                                      | 120  |
| The exponential series and the value of e                |      |
| Logarithmic series                                       | 13   |
| Computation of Napierian logarithms                      | 13:  |
| The modulus of tabular logarithms                        |      |
| The developments of $\sin x$ and of $\cos x$             | 134  |
| Examples XIX                                             | 13   |