THE FREEZING-POINT, BOILING-POINT, AND CONDUCTIVITY METHODS

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649351909

The Freezing-point, Boiling-point, and Conductivity Methods by Harry C. Jones

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

HARRY C. JONES

THE FREEZING-POINT, BOILING-POINT, AND CONDUCTIVITY METHODS

Freezing-Point, Boiling-Point,

----AND----

Conductivity Methods

-BY-

HARRY C. JONES,

INSTRUCTOR IN PHYSICAL CHRMISTRY IN JOHNS
HOPEINS UNIVERSITY

RASTON, PA.: CHREICAL PUBLISHING CO. 1897

(All rights reserved.)

PREFACE

I have been impressed, in teaching the physical chemical methods in the laboratory, with the fact, that there is no readily accessible place in which they are treated satisfactorily from both the standpoint of theory and of practice. In the text-books, the theoretical side is developed, and usually without sufficient attention to the details of manipulation, to enable them to be applied successfully in the laboratory. In the laboratory manuals, on the other hand, these methods are often treated largely from the mechanical side, and their theoretical bearing might thus be lost sight of.

The physical chemical methods, which find most frequent application in the laboratory, are probably those based upon the lowering of the freezing-point, and the rise in the boiling-point of a solvent, produced by a dissolved substance, and the electrolytic conductivity of solutions of electrolytes. It is my chief object in preparing this little work to give an account of the operations involved in carrying out these methods in the laboratory. But since the mere mechanical application of any scientific method is a matter of comparatively little significance, I have aimed to give, also, enough of the theoretical ground on which each of them rests, to enable the student to work with them intelligently, and to see clearly their scientific significance and use.

HARRY C. JONES.

	a	
	25 W	
#8 %20		
	8	T is
	80 50	

CONTENTS

PART I

THE FREEZING-POINT METHOD
PAGE
Theoretical Discussion
Barly History t
Work of Racult
Molecular Lowering for Different Solvents 3
Molecular Lowering in Aqueous Solutions 4
Theory of Electrolytic Dissociation
Calculation of the Molecular Lowering 6, 7
Experimental Verification 8
Calculation of Molecular Weights from Lowering of Freez-
Point 8, 9
The Application of the Freezing-Point Method to the Determina-
tion of Molecular Weights in Solution 9
The Apparatus of Beckmann 10, 11
Carrying out a Determination
Correction for the Separation of Ice
The Application of the Freezing-Point Method to the Measure-
ment of Electrolytic Dissociation 14
The Method of Calculating Dissociation from Lowering of
Freezing-Point15, 16
The Method of Work 16
The Apparatus of Jones
Comparison of the Results with the Dissociation from Con-
ductivity Measurements 21

PART II

THE BOILING-POINT METHOD
PAGE
Theoretical Discussion
Historical23, 24
Work of Raoult24, 25
The Relative Lowering of the Vapor-Tension 26
Calculation of Molecular Weights from Lowering of the Va-
por-Tension
Beckmann's Work on Rise in Boiling-Point27, 28
Calculation of Molecular Weights from Rise in the Boiling-
Point of Solvents
Values of the Constants for Solvents
Relations between Boiling-Point and Preczing-Point Meth-
ods29, 30
The Application of the Boiling-Point Method to the Determina-
tion of Molecular Weights in Solution 30
The Apparatus of Beckmann 31-33
The Apparatus of Hite 33-35
The Apparatus of Jones 34-36
Carrying Out a Determination 36-39
Correction for Separation of Vapor 39
Results of Measurements 40, 41
±100
PART III
THE CONDUCTIVITY METHOD
Two Classes of Conductors 42
Electrolytes and Non-Electrolytes 42
Specific Conductivity 43, 44
Molecular Conductivity 44
Dissociation Measured by Conductivity Method 45, 46
Determination of μ _α 46-50

vi	CONTENTS
PAGE	
e Measure-	The Application of the Conductivity Method to the
50	ment of Electrolytic Dissociation
50-52	The Apparatus Employed
52, 53	Calculation of the Molecular Conductivity
54	Temperature Coefficient of Conductivity
55	The Ostwald Thermoregulator
56-58	Calibrating the Wire
58	Carrying Out a Conductivity Measurement
59	Determination of the Cell Constant
	Precautions
60, 61	Correction for the Conductivity of Water
61-63	The Purification of Water
64	Substances to be Used

