FAMOUS PROBLEMS OF ELEMENTARY GEOMETRY: THE DUPLICATION OF THE CUBE, THE TRISECTION OF AN ANGLE, THE QUADRATURE OF THE CIRCLE

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649356904

Famous Problems of Elementary Geometry: The Duplication of the Cube, the Trisection of an Angle, the Quadrature of the Circle by Wooster Woodruff Beman \& David Eugene Smith

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd.
Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

FAMOUS PROBLEMS OF ELEMENTARY GEOMETRY: THE DUPLICATION OF THE CUBE, THE TRISECTION OF AN ANGLE, THE QUADRATURE OF THE CIRCLE

FAMOUS PR0BLEMS

OF

ELEMENTARY GE0METRY

the duplication of the cube
 THE TRISECTION OF AN ANGLE
 the quadrature of the clrcle

AN AUTHORIZED TRANSLATION OF F. KLEEN'S VORTRÄGE ÜBKR AUSGFWÄHLTE FRAGEN DER ELEMENTAKGEOMETRIL AUSGEARBEITET VON F. TÄGERT

BY
WOOSTER WOODRUFF BEMAN
Peofrssor of Mathrmatics in tie Unifrrsity of Migitigan
AND
DAVID EUGENE SMITH
Profersor of Mathrmatigs in the Michigan State Normal. Cohirge.

GINN \& COMPANY
bOSTON • NEW YORK • CHICAGO - LONDON

COPXRIGHT, 1897, BY
Woostee Woodruff Beman and Datid Eugene Smith

ALL RIGBHTS RESERVED
39.12

PREFACE.

The more precise definitions and more rigorous methods of demonstration developed by modern mathematics are looked upon by the mass of gymnasium professors as abstruse and excessively abstract, and accordingly as of importance only for the small circle of specialists. With a view to counteracting this tendency it gave me pleasure to set forth last summer in a brief course of lectures before a larger andience than usual what modern seience has to say regarding the possibility of elementary geometric constructions. Some time before, I had had occasion to present a sketch of these lectures in an Easter vacation course at Göttingen. The audience seemed to take great interest in them, aud this impression has been confirmed by the experience of the summer semester. I venture therefore to present a short exposition of my lectures to the Association for the Advancement of the Teaching of Mathematics and the Natural Sciences, for the meeting to be held at Göttingen. This exposition has been prepared by Oberlehrer Tagert, of Ems, who attended the vacation course just mentioned. He also had at his disposal the lecture notes written out under my supervision by several of my summer semester students. I hope that this unpretending little book may contribute to promote the useful work of the association.
F. KLEIN.

TRANSLATORS' PREFACE.

At the Göttingen meeting of the German Association for the Advancement of the Teaching of Mathematics and the Natural Sciences, Professor Felix Klein presented a discussion of the three famous geometric problems of antiquity, - the duplication of the cube, the trisection of an angle, and the quadrature of the circle, as viewed in the light of modern research.

This was done with the avowed purpose of bringing the study of mathematics in the university into closer touch with the work of the gymnasium. That Professor Klein is likely to succeed in this effort is shown by the favorable reception accorded his lectures by the association, the uniform commendation of the educational journals, and the fact that translations into French and Italian have already appeared.

The treatment of the subject is elementary, not even a knowledge of the differential and integral calculus being required. Among the questions answered are such as these: Under what circumstances is a geometric construction possible? By what means can it be effected? What are transcendental numbers? How can we prove that e and π are transcendental?

With the belief that an English presentation of so important a work would appeal to many unable to read the original,

Professor Klein's consent to a translation was sought and readily secured.

In its preparation the authors have also made free use of the French translation by Professor J. Griess, of Algiers, following its modifications where it seemed advisable.

They desire further to thank Professor Ziwet for assistance in improving the translation and in reading the proofsheets.
W. W. BEMAN.

August, 1897.
D. E. SMITH.

CONTENTS.

INTRODUCTION.

Practical and Theoretical Constructions PAGE
2
2
Statement of the Problem in Algebratc Form 3
PART I.
The Possibility of the Construction of Algebraic Expressions.
Chapter I. Algebraic Equations Solvable by Square Roots.
1-4. Structure of the expression x to be constructed 5
5, 6. Normal form of x 6
7, 8. Conjugate values 7
9. The corresponding equation $F(x)=0$ 8
10. Other rational equations $f(x)=0$ 8
11, 12. The irreducible equation $\phi(x)=0$ 10
13,14 . The degree of the irreducible equation a power of 2 11
Chapter II. The Delian Problem and the Trisection of tie
Angle.

1. The impossibility of solving the Delian problem with straight edge and compasses 13
2. The general equation $x^{3}=\lambda$ 13
3. The impossibility of trisecting an angle with straight edge and compasses 14
Chapter III. The Division of the Circle into Equal Parts.
4. History of the problem 16
2-4. Gauss's prime numbers 17
5. The cyclotomic equation 19
6. Gauss's Lemma 19
7, 8. The irreducibility of the cyclotomic equation 21
Chapter IV. The Construction of the Regular Polygon of17 Sides.
PAGE
7. Algebraic statement of the problem 24
$2-4$. The periods formed from the roots 25
5, 6. The quadratic equations satisfied by the periods 27
8. Historical account of constructions with straight edge and compasses 32
8, 9. Von Staudt's construction of the regular polygon of 17 sides 34
Chapter V. General Considerations on Algerraic Construotions.
9. Paper folding 42
10. The conic sections 42
11. The Cissoid of Diocles 44
12. The Conchoid of Nicomedes 45
13. Mechanical devices 47

PART II.

Transcendental Numbers and the Quadrature of the Circle.
Chafter 1. Cantor's Demonstration of the Eifistence of Transorndental Numbers.

1. Definition of algebraic and of transcendental numbers 49
2. Arrangement of algebraic numbers according to height 50
3. Demonstration of the existence of transcendental numbers 53
Chapter II. Histomical Survey of the Attempts at the Com- putation and Construetion of π.
4. The empirical stage 56
5. The Greek mathematicians 56
6. Modern analysis from 1670 to 1770 58
4,5 . Revival of critical rigor since 1770 59
Chapter III. The Transcendence of the Ntimber e.
7. Outline of the demonstration 61
8. The symbol $h \mathrm{r}$ and the function $\phi(\mathrm{x})$ 62
9. Hermite's Theorem 65
