FIRST PRINCIPLES OF THE DIFFERENTIAL AND INTEGRAL CALCULUS, OR THE DOCTRINE OF FLUXIONS, TAKEN CHIEFLY FROM THE MATHEMATICS OF BEZOUT

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649583898

First Principles of the Differential and Integral Calculus, or the Doctrine of Fluxions, Taken Chiefly from the Mathematics of Bézout by Etienne Bézout

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

ETIENNE BÉZOUT

FIRST PRINCIPLES OF THE DIFFERENTIAL AND INTEGRAL CALCULUS, OR THE DOCTRINE OF FLUXIONS, TAKEN CHIEFLY FROM THE MATHEMATICS OF BEZOUT

FIRST PRINCIPLES

--

DIFFERENTIAL AND INTEGRAL CALCULUS,

OR THE

DOCTRINE OF FLUXIONS,

INTLYDED

AS AN INTRODUCTION TO THE PHYSICO-MATREMATICAL SCIENCES;

TAKEN CHIEFLY

FROM THE MATHEMATICS OF BEZOUT, (Stierne)

AND TRANSLATED FROM THE PRENCH

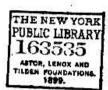
FOR THE USE OF THE STUDENTS OF THE UNIVERSITY

AT

CAMBRIDGE, NEW ENGLAND.

SECOND EDITION.

BOSTON:
PUBLISHED BY HILLIARD, GRAY, & C.C.
1836.



Entered according to act of Congress in the year one thousand eight bundred and thirty-six,
by Hillians, Garr, & Co,
in the Clerk's office of the District Court of the District of Messachusests.

CAMBRIDGE PRESS: METCALF, TORRY, AND BALLOU.

ADVERTISEMENT

TO THE FIRST EDITION.

THE following treatise, except the introduction and notes, is a translation of the Principes de Calcul qui servent d'Introduction aux Sciences Physico-Mathématiques of Bézout. It was selected on account of the plain and perspicuous manner for which the author is so well known, as also on account of its brevity and adaptation in other respects to the wants of those who have but little time to devote to such studies. The easier and more important parts are distinguished from those which are more difficult or of less frequent use, by being printed in a larger character. In the Introduction; taken from Carnot's Reflexions sur la Metaphysique du Calcul Infinitesimal, a few examples are given to show the truth of the infinitesimal method, independently of its technical form. Moreover in the 4th of the notes, subjoined at the end, some account is given from the same work, of the methods previously in use, analogous to the Infinitesimal Analysis. The other notes are intended to supply the deficiencies of Lacroix's Algebra (Cambridge Translation), considered as a preparatory work.

Since this treatise was announced, the compiler of the Cambridge Mathematics has been obliged, on account of absence from the country and infirmity of sight, to resign his work into other hands. This circumstance is mentioned to account for the delay attending the publication, as well as the occasional want of conformity to other parts of the course in the mode of rendering certain words and phrases which a revision of the translation, had it been practicable, would have easily remedied.

Cambridge, July, 1824.

CONTENTS.

INTRODUCTION.

Preliminary Principles	ě	26 1600	•		•	8	•	•	, 7
ELEMENTS OF	THE	DII	FE	REN	TIA	L CA	LCU	LUS.	
Of Second, Third, &c.	Diffe	rentis	als			196			18
Of the Differentials of	Sines,	Cosi	nes,	&c.			i.		21
Of Logarithmic Differen			4		70				23
Of the Differentials of	Expo	nenti	al Q	uanti	ties	•			27
Application of the preci					0 8	1			28
Application to the Sub				ents,	Sub	norme	ıls, &	c. of	
Curved Lines			•		*	•	()(•	•	28
Of Multiple points						19			58
Of the visible and invis				ntlex	ion	•	2.672		64
Observations on Maxim	310							~ ·	68
Of Cusps of different S						t Sor	ts of	Con-	-
tact of the Branch									69
On the Radii of Curvat	ure a	nd th	e De	velop	ment	or E	volute	е .	69
ELEMENTS C	F T	HE I	INT	EGR	AL (CALC	CULU	S.	40
Explanations .		ę	1 00	0.8	*	•00	e (ii		74
Of Differentials with a	single	Var	iable	, whi	ch h	ve a	n alg	ebra-	
ical Integral; and	first,	of sir	nple	differ	entia	ls .			75
Of Complex Differentia	als w	hose	Inte	grati	on d	epen	ds on	the	
fundamental Rule	,	0	+	Ϊ.		•	100	16	77
Of Binomial Differentia	als wh	ich r	nay l	e int	egrat	ed al	gebrai	ically	79
Application of the prece	eding	Rule	s to	the C	tuadr	ature	of C	urves	85
Application to the recti	ficatio	n of	Curv	ed L	ines	-			91
Application to Curved	Surfac	es	161	() : ()		40	20100	92	93
Application to the Mea			lidity			2.6	n 82		95
On the Integration of					Sine	es and	Cos	ines	104
On the Mode of Integ									
of that Method .	8	- 150	100	F7 3		·		198	106
Uses of the preceding	App	oxim	ation	18, ir	the	Inte	gratic	n of	
Different Quantitie		98		98		100			119

8

±0.

*y, *

By the Table of Increasing Latitudes or Meridional Parts .	132
By Reduced Maps or Mercator's Chart	132
On the Manner of reducing when it is possible, the Integration of a proposed Differential, to that of a known Differential,	
and distinguishing in what Cases this may be done .	133
On Rational Fractions	137
On certain Transformations by which the Integration may be	
facilitated	144
On the Integration of Exponential Quantities	147
On the Integration of Quantities with two or more Variables	148
On differential Equations	151
On Differential Equations of the second, third, and higher orders	164
NOTES.	
1. Nature and Construction of a Curve passing through certain	
given Points	175
2. General Demonstration of the Binomial Formula	177
3. On the Method of Indeterminate Coefficients	179
4. On the Methods which preceded, and in some measure sup-	
plied the place of the Infinitesimal Analysis.	
1st. On the Method of Exhaustions	182
2d. On the Method of Indivisibles	185
3d. On the method of Indeterminate Quantities	188
41 Of Billion and ITM and Builds	100

*

INTRODUCTION.

THE Infinitesimal Analysis, as presented in the following Treatise, proposes to ascertain the relation of definite, assignable quantities, by comparing them with quantities which are here called infinitely small. But by infinitely small quantities is meant quantities which may be made as small as we please, without altering the value of those with which they are compared, and whose ratio is sought. The first idea of this calculus was probably suggested by the difficulties which are often met with in endeavouring to express by equations the different conditions of a problem, and in resolving these equations when formed. When the exact solution of a problem is too difficult, it is natural to endeavour to approximate as nearly as possible to an accurate solution, by neglecting those quantities which embarrass the combinations, if it is seen that they are so small, that the neglect of them will not materially affect the result. Thus, for example, it being found very difficult to discover directly the properties of curves, mathematicians would have recourse to the expedient of considering them as polygons of a great number of sides. For, if a regular polygon be inscribed in a circle, it is manifest, that these two figures, although they can never coincide and become the same, approach each other the more nearly in proportion as the number of the sides of the polygon increases. Whence it follows, that, by supposing the number of sides very great indeed, we may, without any very sensible error, attribute to the circle the properties which are found to belong to the inscribed polygon. And if, in the course of a calculation, we should find a circumstance in which the process would be much simplified by neglecting one of these exceedingly small sides, when compared with a radius, for example, we might evidently do it without inconvenience, since