AN ELEMENTARY TREATISE ON THE INTEGRAL CALCULUS: FOUNDED ON THE METHOD OF RATES OR FLUXIONS

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649053896

An Elementary Treatise on the Integral Calculus: Founded on the Method of Rates Or Fluxions by William Woolsey Johnson

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

WILLIAM WOOLSEY JOHNSON

AN ELEMENTARY TREATISE ON THE INTEGRAL CALCULUS: FOUNDED ON THE METHOD OF RATES OR FLUXIONS

Trieste

banus

.

÷2

* AN

0.00

.

23

- 25

ELEMENTARY TREATISE

ON THE

INTEGRAL CALCULUS

METHOD OF RATES OR FLUXIONS

FOUNDED ON THE

BY

WILLIAM WOOLSEY JOHNSON

PROPENSOR OF MATHEMATICS AT THE UNITED STATES HAVAL ACADEMY ANNAPOLIS MARVLAND

.

JOHN WILEY AND SONS 15 ASTOR PLACE

Educ. T 18:0.84.468

24

4

٠

HARVARD COLLEGE LIBRARY GIFT OF PROF. PAUL H. HARUS FEB 7 1935

•

2

12

Į

COPVRIGHT, 1881, By JOHN WILEY AND SONS,

1

15

-PARES OF J. J. LITTLE & CO., NOR, 19 TO SC ASTON PLACE, NEW YORK,

•

PREFACE.

.

üi

,

. . . .

î.

THIS work, as at present issued, is designed as a shorter course in the Integral Calculus, to accompany the abridged edition of the treatise on the Differential Calculus, by Professor J. Minot Rice and the writer. It is intended hereafter to publish a volume commensurate with the full edition of the work above mentioned, of which the present shall form a part, but which shall contain a fuller treatment of many of the subjects here treated, including Definite Integrals, and the Mechanical Applications of the Calculus, as well as Elliptic Integrals, Differential Equations, and the subjects of Probabilities and Averages. The conception of Rates has been employed as the foundation of the definitions, and of the whole subject of the integration of known functions. The connection between integration, as thus defined, and the process of summation, is established in Section VII. Both of these views of an integral-namely, as a quantity generated at a given rate, and as the limit of a sum-have been freely used in expressing geometrical and physical quantities in the integral form.

PREFACE.

The treatises of Bertrand, Frenet, Gregory, Todhunter, and Williamson, have been freely consulted. My thanks are due to Professor Rice for very many valuable suggestions in the course of the work, and for performing much the larger share of the work of revising the proof-sheets. W. W. J.

٠

U. S. NAVAL ACADEMY, July, 1881.

iv

.

CONTENTS.

33

- 20

.

CHAPTER L

ELEMENTARY METHODS OF INTEGRATION.

1.

~~ 1	PACE
tegrals	I
e differential of a curvilinear area	
finite and indefinite integrals	4
ementary theorems	6
indemental integrals	7
Examples 1.	10

· II,

	Direct integration	14
	Rational fractions	15
	Denominators of the second degree.	16
	Denominators of degrees higher than the second	19
	Denominators containing equal roots.	
3	Examples II	

III.

Trigonometric integrals	
Cases in which $\int \sin^{44} \theta \cos^{4} \theta d\theta$ is directly integrable	34
The integrals $\int \sin^2 \theta d\theta$, and $\int \cos^2 \theta d\theta$	36
The integrals $\int \frac{d\theta}{\sin \theta \cos \theta}$, $\int \frac{d\theta}{\sin \theta}$, and $\int \frac{d\theta}{\cos \theta}$.	37
Y	

CONTENTS.

	AGE
Miscellaneous trigonometric integrals	38
The integration of $\frac{d\theta}{a+\delta\cos\theta}$	40
Examples III.	43

CHAPTER II.

METHODS OF INTEGRATION-CONTINUED.

IV.

Integration by change of independent variable	50
Transformation of trigonometric forms	
Limits of a transformed integral	
The reciprocal of x employed as the new independent variable	53
A power of x employed as the new independent variable	54
Examples IV	56

V.

.

Integrals containing radicals . Radicals of the form $\sqrt{(ax^2 + \delta)}$	59 61
The integration of $\frac{dx}{\psi(x^2 \pm a^2)}$	64
Transformation to trigonometric forms	65
Radicals of the form $\sqrt{ax^3 + \delta x + c}$	67
The integrals $\int \frac{dx}{\psi[(x-\alpha)(x-\beta)]}$ and $\int \frac{dx}{\psi[(x-\alpha)(\beta-x)]}$ Examples V.	68
Examples V	70

VI,

A geometrical	illustration		78
Applications .			78
	C)	cos ^m e de	
Reduction of	∫sin™ e cos≈ e de		84

vi

21

Į

.

CONTENTS.

	AGE
Illustrative examples	87
Extension of the formula employed in integration by parts	89
Taylor's theorem	90
Examples VI	91

VII.

Definite integrals	97
Multiple-valued Integrals	
Formulas of reduction for definite integrals	101
Elementary theorems relating to definite integrals	104
Change of independent variable in a definite integral	105
The differentiation of an integral	
Integration under the integral sign	
The definite integral regarded as the limiting value of a sum	
Additional formulas of integration	
Examples VII	

CHAPTER III.

GEOMETRICAL APPLICATIONS.

VIII.

Areas generated by variable lines having fixed directions	123	
Application to the witch		
Application to the parabola when referred to oblique coordinates		
The employment of an auxiliary variable		03
Areas generated by rotating variable lines		
The area of the lemniscata		
The area of the cissoid		
A transformation of the polar formulas	130	
Application to the folium		
Examples VIII		

IX.

The volumes of solids of revolution	141
The volume of an ellipsoid	143
Solids of revolution regarded as generated by cylindrical surfaces	144
Double integration	145
Determination of the volume of a solid by double integration	149

vii

•