STANDARD METHODS FOR THE EXAMINATION OF WATER AND SEWAGE

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649530878

Standard Methods for the Examination of Water and Sewage by American Public Health Association

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

AMERICAN PUBLIC HEALTH ASSOCIATION

STANDARD METHODS FOR THE EXAMINATION OF WATER AND SEWAGE

Trieste

CONTENTS.

٠

5

÷

ï

3

											- 2	
PREFACE TO THE FOURTH EDITION .	•							\mathbf{r}			•	VII
COLLECTION OF SAMPLES					÷.,							1
QUANTITY OF WATER REQUIRED	FOR	A	NAL	181	8					1.0		1
BOTTLES TIME INTERVAL BETWEEN COLLE	. 48	\mathbf{S}	Ξ.	э.	٠	•	. 10	3 .		•	•	2
TIME INTERVAL BETWEEN COLLE	OTIC	M	AND	A	NAL	YBI	8	32		•	82	2
REPRESENTATIVE SAMPLES	•											8
PHTBICAL EXAMINATION									2			
TEMPERATURE	•					•		÷		•		
TURBIDITY		\mathbf{x}_{i}			e.	• •	d_{i}					
TURBIDITY STANDARD	100										- 22	4
PLATINUM WIRE METHOD .	20	30	÷.			•			8.			5
TURBIDIMETRIC METHOD.		÷0		×	•	6.3	30	(\mathbf{x})			•33	7
CORFFICIENT OF FINENESS												8
COLOB			÷.,	ä.,				-				9
Color	-Co	BA	LT S	TA	NDA	RDE	١.					9
COMPARISON WITH GLASS D	BES										12	
COMPARISON WITH NESSLER	STA	ND	ARDS				8					10
LOVIBOND TINTOMETER .												11
ODOR			*				10					
COLD ODER												12
Нот Оров			<u>.</u>									12
Expression of Results .	5							÷				12
CREMICAL EXAMINATION	-						2	÷.	Ξ.			14
EXPRESSION OF RESULTS FORMS OF NITROGEN			511			10		10	05	200	20	14
FORMS OF NITROGEN		8	31	3		12	5	0	8			15
AMMONIA NITROGEN												
DETERMINATION BY DISTILL.		N										
MEASUREMENT OF AMMO	NIA	N	TRO									18
COMPARISON WITH												
COMPARISON WITH 1	PPP		TINT	R	LAN	DAR	ma					17
MODIFICATION FOR SEW.	ACTE		1.48-1 4					25	2.5			18
DETERMINATION BY DIRECT	Nw				~~	•	8					19
ALBUMINOID NITROGEN												
OBGANIC NITROGEN			÷									
NITRITE NITROGEN									112			- 22
NITRATE NITROGEN		5		2	•		2	2			•	
PHENOLSULFONIC ACID MET		•							÷.		.*	23
REDUCTION METHOD	100	•			•	•	20		•	•	• 0	24
Tents Numberry	•	•	<u>.</u>	•	•	•				•	•	25
TOTAL NITROGEN Oxygen Consumed		•	1	•				•	.*	•	23	25
RECOMMENDED METHOD .	•				•					•	•	
RECOMMENDED MISTHOD .	•	32	•		•	9 ()						
OTHER METHODS	- 55	•	8	3	•	2	33	3				0.24
RELIDUR ON EVAPORATION	1.11			÷.				٠		۲	•	1000
TOTAL RESIDUE FIXED RESIDUE AND LOSS O		•	3		•	•	•			•		29
RITED RESIDUE AND LOSS O	NIC	INT	TION	- C		2010	1.22	1.00	0.2	1220		29

2

TABLE OF CONTENTS

SUBPENDED MATTER .				S27 - 1		•			1.21		-	200	121	30
DETERMINATION WITH	Go). CB	C	RUC	B		•							30
DETERMINATION BY F	TAR	1.71	ON			98.a.		ŝ.	2					80
DETERMINATION OF V	OLTO	~		÷.	0	89	÷.							30
FIXED RESIDUE AND	Long	0	. T				•	•	•					
UADDARDA	0000	UI	•	GHII			•			<u>а</u>		•	•	30
HARDNESS	C.			in	1	•		•	8		•	1	1	31
TOTAL HARDNESS BY	Gou			IUN	•	•	•	٠.		•	•	•	٠	31
TOTAL HARDNESS BY	Don			HOD	8.	·	•	8		2 9		•	•	
TEMPORARY HAEDNESS	BODI	T	LEA	GEN	r .	MET	HOL			38	•	9		84
NON-CARBONATE HAR													\$	84
NON-CARBONATE HAR NON-CARBONATE HAR														
ALKALINITY	÷	55	1	<u>.</u>	5		93							
PROCEDURE WITH PER									۲				٠	
PROCEDURE WITH ME	THYI	. 0	RA	NGE			£3	•			•	•0	•	37
PROCEDURE WITH LAC	MOL	>		•	۲	•	•	×.	÷	38	•	•0	۲	87
PROCEDURE WITH ERY	THE	813			٠		t :	•	1	3	858	:50	٠	37
BICARBONATE		•		• •	٠									37
NORMAL CARBONATE								•	÷					
HTDROXIDE		÷3	\mathbf{x}				ŧ٥.	×		38	•	•	20	
ALEALI CARBONATES		•	٠		٠	•	•	٠						39
ACIDITY		21		-					្					39
TOTAL ACIDITY	34	23	20	÷ 3	4		•	•			•	$\hat{\mathbf{x}}$		40
FREE CARBON DIOXIE	E	•2	•	× -			•	•			•	•		40
FREE MINERAL ACIDS										<u>.</u>				41
MINERAL ACIDS AND S	ULT	TE	8 0	r In	ON	AND	A	,m	IN	UM			2	41
CHLORIDE	•	410					•			3		•0	×	41
IBON		•			æ		•	•						43
TOTAL IBON		1			2									44
COLORIMETRIC M	THO	D	2				•			8				44
COMPARISON W	ITE .	RO	N	STAN	D.	RDS		×.		-	•••			45
COMPARISON W	TH	PEI	M	NEN	T	STAN	DA	RD	8.					46
VOLUMETRIC MET	THOD					100						1		46
DISSOLVED IRON .				а÷.		S. .	•		9		-	21		47
SUSPENDED LEON .		1	€.	à.					÷.			-		47
FERROUS IRON							33						*	
FERRIC IRON			2	81	3					2		1		
MANGANESE		-												
PERSULFATE METHOD		×	2		÷.	0.000				- 1			÷	
BISMUTHATE METHOD			8	8	ē.				Ş.					49
LEAD, ZINC, COPPER, AND	TIN	х.	Ū.		Ċ.			0	8	1				
LEAD														
ZINC	1	•		1	•			•		1	•	1	3	53
TIN									1					- 275
												_		
MINERAL ANALYSIS		8	٠		•	•								1 A A
RESIDUE ON EVAPORA									8					
ALEALINITY AND ACI														
CHLORIDE														
NITRATE NITROGEN .	2003	.		× .		1.00	82				10	•		56

iv

•

1.1

TABLE OF CONTENTS

SEPARATION OF SILICA	, I	BON	i, J	LU	MIN	UM	, C	ALC	ло	4 , A	ND	M	. .
NESIUM								•		×		•	•
SILICA													
IBON AND ALUMIN	no	4	100	۰.	•		•	٠	•	•			÷.:
CALCIUM MAGNEBIUM	2		•	•	9 2		1		10	33	2	37	10
MAGNEBUUM	•	2	•	۰.		<u>.</u>	•	•	•	٠	٠		•
SEPARATION OF SULFA	ΥB,	50	DIU	4 , .	AND	Po	TAP	910	n M			÷.	
SULFATE	۰.	Ø.,	12	. 53	٠	8	8.1	•	$\mathbf{T}^{(i)}$	٠	٠	20	•
SODIUM, POTASSIU	M	LND	La	THI	UM	•	•	•	•				
POTABSIUM			•				•	*					1
LATHICM	. 8		•	1		٠.	٠		•	٠	٠		303
BROMINE, IODINE, AR	BBN	ю,	AND	B	ORIC	A	CID	α.	33				
BROMINE AND IOL	DINI		•	•	٠	•	•	٠	•	٠	٠		•
ABBENIC													
BORIC ACID	٠		•	•		÷	(•	•3	\mathbf{s}	\mathfrak{R}	30	
HTDROGEN SULFIDE	۰.	25	•	•		•			10	22	85	1	
CHLORINE					1		4						
DISSOLVED OXYGEN			•	•			à.		÷0				
ETHER-SOLUBLE MATTER		18	•	53	8 0	•	8	•	10	8 0			192
RELATIVE STABILITY OF E	FFL	UEN	m					2					
BIOCHEMICAL OXYGEN DEM	LAND	D OI	· Sz	WA	GES	AN	bΕ	771	UE	NTB		12	(Fight)
RELATIVE STABILITY N	Mm	THOM	D.	•						•		24	
SODIUM NITEATE MET	HOI	>		•			÷.		•2	*			S•3
NALYSIS OF SEWAGE SLUDGE	ANT	M	UD	D	EPO8	ITS	1						
Collection of Sample .	1									4			
REACTION		зe.		•	•							24	•
SPECIFIC GRAVITT													
MOISTURE	2												
VOLATILE AND FIXED MAT												2	
TOTAL ORGANIC NITROGEN							ŝ.,		27				
ETHER-SOLUBLE MATTER	2	.50			5 C				24				
FREROUS SULFIDE	1	5	3		68	ġ.,	8						
BIOCHEMICAL OXYGEN DEM	AND	D .	÷.		-		ā - 1						
NALYSIS OF CHEMICALS							21						
REAGENTS	8	÷.	9		8								
SULFATE OF ALUMINIUM		S.,	51		38	8	ē -	•	1	5	2	8	
INCOLUDI & MATTER				•	•	•		•					
Owners on At months		. I.	DON	•	•	*	<u>.</u>	•	•	10			•
SULFATE OF ALUMINIUM INSOLUBLE MATTER Oxides of Aluminium Total Iron	~~~	· •	DON		•	8	<u>.</u>	•		8	13		1
TOTAL IRON FERRIC IRON		19		•		8	÷ .	•	1				<u>.</u>
FERRIC IRON	•		•	•		•		•	•				
FERROUS IRON	٠		•	•	8 5	•	•	•	•0	ж	•	8	•
BASICITY RATIO	*	8	8	٠	5	•	•	•	*3	۰			10
													•
SULFATE OF IRON	٠			•	•	٠	٠	•	•	٠	٠	1	
INSOLUBLE MATTER	×.,		•	•	•	•	•		•5	(\mathbf{e})	1	18	
IRON AS FERROUS SUL	JA1			•	•	•	•	٠		57	3		
ACIDITY		٠	•	•	•	•	•			•			
SODA ASH					•		•		•		10		
INBOLUBLE MATTER AVAILABLE ALKALI .				•	•		5	•	•	٠	2	10	•
AVAILABLE ALKALI .	٠	٠	•	•	•	•	•	۲	•	•	٠	•	•
BIRLINGAL BIRLINGRAPHY					21	61 1		1223					

¥'

vi TABLE OF CONTENTS

MICROSCOPICAL EXAMINATION			•	•	•			•	•	•	۲		•	1
MICROSCOPICAL BIBLIOGRA				•				•				2 M		1
BACTERIOLOGICAL EXAMINATION	τ.					•								
APPARATUS		5				2								
SAMPLE BOTTLES .			a .:	•			•			•		3		1
PIPETTES					•									
DILUTION BOTTLES .						20				2	÷.	8		1
PETRI DISHES						÷.	÷.	1.0			8			
FERMENTATION TUBES						1.0	2				÷.			
MATERIALS	- 23	0.1	1				÷.							- 33
WATER		<u>_</u>		3	3					3	÷.	8		13
MEAT EXTRACT .							÷.		-		਼	8	1	
	÷.					Ç.,				2				1.0
BUGARS								1						- 3
Agan							1			1			:	
GELATIN											-	2		
Latmes	•	× .		•	•	•								
GENERAL CHEMICALS	2	۰.	۰.	1	•	8						2	•	
METHODS	•	1		•	•	8		•						
PREPARATION OF CUL	. S.,	÷.,			•	•		•	•			÷.		
FREPARATION OF CUL	FUR		LEO1	A	2	٠		٠		۰				18
TITRATION		S. 1	•	•	•	*						3		
STERILIZATION .								•	100	- 83			•	
NUTBLENT BROTH														1.4
SUGAR BROTHS .	100	10 I.		18	8 3	*		•		\mathbf{x}_{i}				- 8
NUTRIENT GELAT	IN	÷.	•		$\mathcal{T}^{(1)}$			•	1.5			×.	•	- 9
NUTRIENT AGAR		÷	•	•	•									1
LITHUS OR AZOLT	TMI	N Sc	DLU	TIO	N	•								13
· LITMUS-LACTOSE-	AGA	R		•	•				•			с¥.		
ENDO'S MEDIUM		12												
COLLECTION OF SAMPI	36.	÷.	1		2	8	8				8			
STORAGE AND TRANSPO	ORT	ATIO	NO	.8	ANI	PLE	÷.,							
DILUTIONS										0		÷.		
PLATING						÷.,						÷.		
INCUBATION		8		3	8			8		- 3		÷.		
COUNTING				•	÷.	÷.,			•		0	Ċ.,		
THE TEST FOR THE]	PRR	SEN	-		Ň.	Ma					R	ò		
GROUP								0,		ne	ь.	u	111	
PRESUMPTIVE TEST .				•	•		÷.				÷.	*	•	1
PARTIALLY CONFIRMEN				•	•		6 *	•	.					
COMPLETED TEST .		Mol.		•	1		•	•		•				
APPLICATION OF THES		·	1	•	٠		•	٠		18				
APPLICATION OF THES		COL	5	•	•	•	•	•	•		•	े	•	1
Expression of RESUL	LTS	L -		•	•3	٠		•	•	13	≈,			
SUMMARY OF THESE 7	ESI	18	1	•	51	۰.	•		•	•	1			1.17
INTERPRETATION OF R	CESU	LTS	•			٠	•	•	•			2	٠	1
DIFFERENTIATION OF H	ECA	LF	ROM	I N	ON	-FEC	AL	M	EM	BEE	18 01	F TI		
	38	(e. 1	2	•3	•	ж.						÷		1
B. COLI GROUP														
METHYL RED TEST		- 1												1
METHYL RED TEST VOGES PROSKAUER TH	rest.	21 -	4				•							
METHYL RED TEST Voges Proseauer Th Routine Procedure	FOR	. Ba	OTE	RIC	DLO	GICA	LI	Ēx.	AM	NAT	TION			1
METHYL RED TEST	FOR	. Ba	OTE	RIC	DLO	GICA	LI	Ēx.	AM	NAT	TION			1

PREFACE TO FOURTH EDITION.

The Committee on Standard Methods of Bacteriological Water Analysis was reorganized in 1918 with the rollowing membership: F. P. Gorham, chairman, L. A. Rogers, W. G. Bissell, H. E. Hasseltine, H. W. Redfield, with M. Levine as adjunct member. This committee made a report in 1918 which was not acted on by the Laboratory Section, and in 1919 made a revised report, recommending certain changes in Standard Methods, which were adopted by the section and which are now incorporated in this present fourth edition.

Following are the more important changes:

New brands of peptone authorized.

Phenol Red Method of Hydrogen-ion Concentration.

 C_{i}

Five-tenths per cent of sugar specified for broths instead of 1 per cent.

Sterilization of sugar is media specified in greater detail.

Preparation of Endo Medium.

1.1

Synthetic Medium for the Methyl Red Test.

There are no changes in the chemical methods in this edition.

r I 2 . -*****-1

AMERICAN PUBLIC HEALTH ASSOCIATION.

LABORATORY SECTION.

STANDARD METHODS FOR THE EXAMINATION OF WATER AND SEWAGE.

Compiled and revised by committees of the American Public Health Association and the American Chemical Society and referees of the Association of Official Agricultural Chemists.

COLLECTION OF SAMPLES.

QUANTITY REQUIRED FOR ANALYSIS.

The minimum quantity necessary for making the ordinary physical, chemical, and microscopical analyses of water or sewage is 2 liters; for the bacteriological examination, 100 cc. In special analyses larger quantities may be required.

BOTTLES.

The bottles for the collection of samples shall have glass stoppers, except when physical, mineral, or microscopical examinations only are to be made. Jugs or metal containers shall not be used.

Sample bottles shall be carefully cleansed each time before using. This may be done by treating with sulfuric acid and potassium bichromate, or with alkaline permanganate, followed by a mixture of oxalic and sulfuric acids, and by thoroughly rinsing with water and draining. The stoppers and necks of the bottles shall be protected from dirt by tying cloth, thick paper or tin foil over them.

For shipment bottles shall be packed in cases with a separate compartment for each bottle. Wooden boxes may be lined with corrugated fibre paper, felt, or similar substance, or provided with spring corner strips, to prevent breakage. Lined wicker baskets also may be used.

2

x