AN ELEMENTARY TREATISE ON THE INTEGRAL CALCULUS, FOUNDED ON THE METHOD OF RATES OR FLUXIONS

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649570867

An Elementary Treatise on the Integral Calculus, Founded on the Method of Rates or Fluxions by William Woolsey Johnson

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

WILLIAM WOOLSEY JOHNSON

AN ELEMENTARY TREATISE ON THE INTEGRAL CALCULUS, FOUNDED ON THE METHOD OF RATES OR FLUXIONS

Trieste

AN

ELEMENTARY TREATISE

ON THE

INTEGRAL CALCULUS

FOUNDED ON THE

METHOD OF RATES OR FLUXIONS

RV

WILLIAM WOOLSEY JOHNSON

PROFESSOR OF MATHEMATICS AT THE UNITED STATES NAVAL ACADEMY ANNAPULIS MAXVLAND

NEW YORK: John Wiley And Sons, 53 East Tenth Street,

1892.

•

Copypiont, 1291, By John Wiley and Sons.

GIFT OF

÷.,

540

ENGINEERING LIBRARY

UMIV. CE SECOLIAÇÃ

PREFACE.

THIS work, as at present issued, is designed as a shorter course in the Integral Calculus, to accompany the abridged edition of the treatise on the Differential Calculus, by Professor J. Minot Rice and the writer. It is intended hereafter to publish a volume commensurate with the full edition of the work above mentioned, of which the present shall form a part, but which shall contain a fuller treatment of many of the subjects here treated, including Definite Integrals, and the Mechanical Applications of the Calculus, as well as Elliptic Integrals, Differential Equations, and the subjects of Probabilities and Averages. The conception of Rates has been employed as the foundation of the definitions, and of the whole subject of the integration of known functions. The connection between integration, as thus defined, and the process of summation, is established in Section VII. Both of these views of an integral-namely, as a quantity generated at a given rate, and as the limit of a sum-have been freely used in expressing geometrical and physical quantities in the integral form.

公共国家的国际公司员

iii

508233

The treatises of Bertrand, Frenet, Gregory, Todhunter, and Williamson, have been freely consulted. My thanks are due to Professor Rice for very many valuable suggestions in the course of the work, and for performing much the larger share of the work of revising the proof-sheets.

W. W. J.

.

U. S. NAVAL ACADEMY, July, 1881.

CONTENTS.

CHAPTER L

ELEMENTARY METHODS OF INTEGRATION.

Ι.

PAS	
integrals	1
The differential of a curvilinear area	3
	4
Elementary theorems	6
Fundamental integrals	7
Examples I 1	a

11.

Direct integration	14
Rational fractions	
Denominators of the second degree	16
Denominators of degrees higher than the second	19
Denominators containing equal roots	22
Examples II	26

III.

Trigonometric integrals	
Cases in which $\int \sin^{4t} \theta \cos^{4t} \theta d\theta$ is directly integrable	34
The integrals $\int \sin^2 \theta d\theta$, and $\int \cos^2 \theta d\theta$	36
The integrals $\int \frac{d\theta}{\sin\theta\cos\theta}$, $\int \frac{d\theta}{\sin\theta}$, and $\int \frac{d\theta}{\cos\theta}$	37
v	

CONTENTS.

	PAGE:
Miscellaneous trigonometric integrals	38
The integration of $\frac{d\theta}{a+b\cos\theta}$	
Examples 111	43

CHAPTER II.

METHODS OF INTEGRATION-CONTINUED.

1V.

Integration by change of independent variable	50
Transformation of trigonometric forms	
Limits of a transformed integral	53
The reciprocal of x employed as the new independent variable	53
A power of x employed as the new independent variable	54
Examples IV	56
â	

V.

Integrals containing radicals	
The integration of $\frac{dx}{1(x^2 \pm a^2)}$	64
Transformation to trigonometric forms	65
Radicals of the form $y(ax^2 + bx + c)$	67
The integrals $\int \frac{dx}{\eta [(x-\alpha)(x-\beta)]}$ and $\int \frac{dx}{\eta [(x-\alpha)(\beta-x)]}$	68
Examples V	70

VI.

Integration by	/ parts		77
A geometrical	illustration		75
Applications .	************		78
Formulas of r	eduction		81
Reduction of	∫sin <i>‴ ∂ d</i> ∂ and	$\int \cos^{pq} \phi d\phi \dots $	82
Reduction of	∫sin™ ø cos¤ ø dø		84

CONTENTS.

	1.500
	PAGE
Illustrative examples	87
Extension of the formula employed in integration by parts	89
Taylor's theorem	90
Examples VI	91

VII.

Definite integrals	97
Multiple-valued integrals	100
Formulas of reduction for definite integrals	101
Elementary theorems relating to definite integrals	104
Change of independent variable in a definite integral	105
The differentiation of an integral	106
Integration under the integral sign	100
The definite integral regarded as the limiting value of a sum	
Additional formulas of integration	115
Examples VII	117

CHAPTER III.

GEOMETRICAL APPLICATIONS.

VIII.

Areas generated by variable lines having fixed directions	123
Application to the witch	124
Application to the parabola when referred to oblique coordinates	126
The employment of an auxiliary variable	126
Areas generated by rotating variable lines	128
The area of the lemniscata	129
The area of the cissoid	130
A transformation of the polar formulas	
Application to the folium	131
Examples VIII	134

IX.

54

The volumes of solids of revolution	1.11
The volume of an ellipsoid	
Solids of revolution regarded as generated by cylindrical surfaces	144
Double integration	1.45
Determination of the volume of a solid by double integration	149