FOUR LECTURES ON STATIC ELECTRIC INDUCTION

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649504817

Four Lectures on Static Electric Induction by J. E. H. Gordon

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

J. E. H. GORDON

FOUR LECTURES ON STATIC ELECTRIC INDUCTION

FOUR LECTURES

ON

STATIC ELECTRIC INDUCTION.

J. E. H. GORDON, B.A.,

Assistant Secretary of the British Association.

DELIFERED AT THE

ROYAL INSTITUTION OF GREAT BRITAIN, 1879.

Blud in his rebus non est mirabile, quare, omnis oun rerum primordis eint in mosm, summs tunen eumms videstar einre quiete, praeterquam siquid proprio dat corpore motus, omnis enim longo nostris ab sensibus infra primorum natura jaces.

LUCKETTUS, II, 308.

Deto Dork :

D. VAN NOSTRAND, PUBLISHER, 23, WARREN AND 27, MURRAY STREETS.

1881.

CONTENTS.

LECTURE 1.

THURSDAY, January 16th, 1879.

(2)	PAGE
Introductory	1
Preliminary Experiments	4
Conductors and Insulators	8
Equal quantities of the two electricities are	
always induced	12
Statement of the problem, "When induction)[
takes place between two bodies, what is the nature of the action across the intervening	(G
space?"	14
Induction is a state of strain; in conductors	
this state is continually giving way	16
Mechanical illustration	16
When current passes, strain gives way, and in-	
duction ceases	20
Strain of glass released by heating it	21
Impossibility of producing one kind of elec-	
tricity only	22

LECTURE IL.

THU	BBDA	Y, Ja	nuary	1 23rd	1		
Continuation of arg	rume	nte fo	r su	pposin	g ind	ue-	PAGE
tion to be a sta	50.000000				4 .20000		
The Leyden jar	•	23 • C)		300	•	18	25
Residual charge	*	*1		69		*	29
Mechanical experin	ent	to ex	plain	it	340	90	30
Phenomena caused	by s	traini	ng of	glass	of jar		31
Hopkinson's exper covery from the			CONTRACTOR (***	The second second second			
by mechanical			195		**	200	34
How is the electric		-51.00 To be 10.00	opaga	ted?	341	**	39
Faraday's study of		-011-01-01-01 PM	A 75		ines		40
Experiments shows corner, and is	ng t	hat i	nduci	tion ca	n tur		10.78
at a distance		200 cm	9.			4	40
Induction must pre	ccde	disch	arge	(· · · · ·	86	9 13	44
Curved discharge			3.			33	45
Faraday and Maxw accompanying		40 707			-	are	47
De la Rue's observ						in	7055
vacuum tubes					•	•	48

LECTURE III.

THURSDAY, January 30th.

If induction is a state of strain of the medium through which it is propagated, different

					PAGE
media should propaga	te it	with	differ	rent	
strengths; that is, shoul					
specific inductive capac	ity.	Farad	lay's	ex-	
periments show that the	ey do	80.	8.0	30.0	49
Faraday's measurements .	:	*	48	3543	53
His results				2.4	60
Reasons for accurate measure	ement	ts .			61
Recent measurements by the	Lect	urer			63
Theory of the new experimen		**			65
Experimental details :-					
The induction balance			999	02	73
The coil	-		994	80	79
The rapid break .	63.	23	346	100	80
The secondary reversing	engi	ne.		32	83
Plan of the laboratory		300	\$ P		84
Experiment made before the	audie	nce		- 83	86
Table of results		70110	1		90
	2.5	20	1000	2.5	1877
LECTUR	E IV	7.			
THURSDAY, Fe	bruar	y 6th.			
Specific inductive capacities	of gas	es:			
Faraday's experiments			14		92
Ayrton and Perry's exp	erime	nts			93
The open condenser .	•	21			95
The closed condenser					95
Table of results .					99
Olask Manus III. alastus maasu			-C 1:-	-1.4	100

	PAGE
Arguments for supposing electric induction and light to be strains of the same ether .	105
In both cases the energy is partly potential	100
and partly kinetic	107
Vibrations of electric induction are like	10.
. those of light at right angles to the	
direction of the ray	110
The theory accounts for the fact that con-	
ductors are opaque	113
Comparison of velocity of light with that	
of electro-magnetic induction	114
Table of velocities	118
In air and vacuum velocities sensibly equal	120
Determination of velocities in other media:-	-
Of light	120
Of electro-magnetic induction	122
Comparison	123
Experiments showing actions of electricity on	
light and vice vered	126
Electro-magnetic action on polarized light	
discovered by Faraday	127
Electro-etatic action on polarized light	
discovered by Dr. Kerr	133
Effect of light on selenium :-	
Increases the conductivity	139
Produces a current	140
Conclusion	140

FOUR LECTURES

ON

ELECTROSTATIC INDUCTION,

DELIVERED AT THE ROYAL INSTITUTION,

Jan. 16, 23, 30, and Feb. 6, 1879,

BY J. E. H. GORDON, B.A.

(Assistant Secretary of the British Association).

LECTURE I.

JAN, 16.

INTRODUCTORY.

"Amongst the actions of different kinds into which electricity has conventionally been subdivided, there is, I think, none which excels, or even equals, in importance that called *Induction*. It is of the most general influence in electrical phenomena, appearing to be concerned in every one of them, and has in reality the character of a first, essential, and fundamental principle. Its comprehension is so important that I think we cannot proceed much further in the investigation of

the laws of electricity without a more thorough understanding of its nature. How otherwise can we hope to comprehend the harmony and even unity of action which doubtless governs electrical excitement by friction, by chemical means, by heat, by magnetic influence, by evaporation, and even by the living being ?"

So, forty-two years ago, wrote the Master whose memory is honoured wherever the study of natural laws is loved, and whom in this place we should more especially remember, as the Royal Institution was his home and workshop during all the best years of his life. Need I add that the passage I have just read is from the "Experimental Researches" of Faraday?

The subject of our study to-day and in the other lectures of this course will be such of the laws of induction as are now clearly known. I shall first endeavour to show you what the term induction means, and what is the problem about it which for fifty years students of nature have been trying to solve. The problem is partly