ELEMENTS OF SOLID GEOMETRY

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649515769

Elements of Solid Geometry by W. H. Bruce & C. C. Cody

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

W. H. BRUCE & C. C. CODY

ELEMENTS OF SOLID GEOMETRY

* ELEMENTS

OF

SOLID GEOMETRY

BY

W. H. BRUCE, A.M., PH.D.
PRESIDENT NORTH TEXAS STATE NORMAL COLLEGE

AND

C. C. CODY, A.M., Ph.D. PROFESSOR OF MATHEMATICS, SOUTHWESTERN UNIVERSITY

DALLAS, TEXAS
THE SOUTHERN PUBLISHING COMPANY
1914

Educt 149.14.238

HA WAS ESTER LIBRARY

THE

GENERAL OF EDUCATION

MAGAZET, 120

COPPRIGHT, 1912, BY THE SOUTHERN PUBLISHING COMPANY.

CONTENTS

					вос	ĸ	VI						
					Doc								PAGE
Definition	8				1.		•0)		%				1
Lines and	Pla	nes in	Spa	ce	J# 1							÷	10
Dihedral a	and :	Polyh	edra	l Ang	gles		26	•	٠	8	•	10	6, 26
					воо	K	VII						
Definition	8	20		-				33					81
Polyhedro	DS.			:12	150		34		-	9.0	37. 3 46		31
Prisms										7.		2	82
Pyramids			- 3				- 8	8		7			46
Regular P		edro	ns .	50			- 20		1				68
Cylinders		•			10000	CON.		120			10		65
Cones	•			*		٠	183	٠	:#		S*1	:51	69
*					воо	K '	וודע						
					Тик								
Definition	8			3		10	<u>.</u> 3	92	÷		1576	25	75
Spherical	Ang	les					27						82
Spherical	Poly	gons											88
Measurem	ent	of Sp	heric	al Su	rfaces								95
0-1-1-1	** 1												100

INDEX OF DEFINITIONS

SECTION	SECTION
Angle of lune 785	Icosahedron 600
Angle of spherical polygon . 758	Inclination 582
Axis of cone 701	Lateral area 601, 638
Axis of cylinder 682	Lateral edge 601, 638
Axis of pyramid 639	Lateral face 601, 638
Bi-rectangular spherical tri-	Lateral surface 678, 698
angle 775	Lune 784
Cone 698-702	Nappe 697
Conical surface 696	Octahedron 600
Convex polyhedron 599	Parallelopiped 608
Convex spherical polygon 755	Plane 522
Cube 611	Plane angle of dihedral angle
Cylinder 678-682	561, 564
Cylindrical surface 677	Polar distance 740
Diagonal of spherical polygon 754	Polar triangle 768
Diameter of sphere 724	Poles of circle 735
Dihedral angle 558	Polyhedral angle 586
Directrix 677, 696	Polyhedron 597-599
Distance 532, 738	Prism 601-607
Dodecahedron 600	Projecting plane 580
Edge of dihedral angle 559	Projection 575
Edge of polyhedral angle 586	Pyramid 638-643
Edge of polyhedron 597	Radius of cylinder 682
Element 677, 696	Radius of sphere 723
Equal solids 613	Regular polyhedron 673
Face 559, 586, 597	Right section of cylinder 687
Face angle 586	Right section of prism 606
Frustum of cone 711	Section 598
Frustum of pyramid 643	Side of spherical polygon 753
Generatrix 677, 696	Similar cones 704
Great circle of sphere 783	Similar cylinders 683
Hexahedron 600	Similar polyhedrons 666
5. Transfer (1945)	[전통] [1] [1] [1] [1] [1] [1] [1] [1] [1] [1

SECTI	I NO	SECTION
Slant height 642, 644, 7	03	Symmetrical spherical polygons 758
Small circle of sphere 7	34	Tangent 684, 705, 727, 728
Sphere 7	722	Tetrahedron 600
Spherical angle 7	150	Trihedral angle 589
Spherical excess of polygon . 8	900	Tri-rectangular spherical tri-
Spherical excess of triangle . 7	777	angle 776
Spherical polygon 7	153	Vertex 586, 597, 638, 753
Spherical pyramid 8	302	Vertical polyhedral angles . 592
Spherical sector 8	304	Vertical spherical polygons . 757
Spherical segment 8	806	Volume 612
Symmetrical polyhedral angles &	591	Zone 786

SYMBOLS AND ABBREVIATIONS.

BY.		į	axiom.	 circle. 	
cor.		i	corollary.	+ plus.	
def.		÷	definition.	minus.	
iden.			identity.	× multiplied by.	
prop.			proposition.	+, /, : divided by.	
post,			postulate.	= is equal to or e	quivalent to.
cons.			construction.	~ is similar to.	
hyp.			hypothesis.		
110.10			rectangle.	> , is greater than.	
rt.			right.	< is less than.	
			straight.	⊥ is perpendicul	ar to, or a
			angle.	perpendicula	
Ϋ́Δ			triangle.	, is parallel to, o	r a parallel.
			parallelogram.	i i	355

Q. E. D. (quod erat demonstrandum), which was to be proved.

Nors. The foregoing are used also in the plural, as = means "are equal to," as well as "is equal to."

Q. E. F. (quod erat faciendum), which was to be done.

REFERENCES TO PLANE GEOMETRY

- 63. The sum of all the angles about a point is equal to two straight angles.
- 65. If two straight lines intersect, the vertical angles are equal.
 - 85. In congruent figures homologous parts are equal.
- 86. Any side of a triangle is less than the sum of the other two, and greater than their difference.
- 91. Two triangles are congruent if they have two sides and the included angle of the one equal, respectively, to two sides and the included angle of the other.
- 92. Two right triangles are congruent if the legs of the one are equal, respectively, to the legs of the other.
- 94. Two triangles are congruent if they have two angles and the included side of the one equal, respectively, to two angles and the included side of the other.
- 95. Two right triangles are congruent if a leg and an adjacent acute angle of the one are equal, respectively, to a leg and an adjacent acute angle of the other.
- 108. The perpendicular bisector of a line is the locus of points equidistant from the extremities of the line.
- 109. Two points each equidistant from the extremities of a line determine the perpendicular bisector of the line.
- 115. Only one perpendicular can be drawn from a given external point to a given straight line.
- 116. The perpendicular is the shortest line that can be drawn from a given point to a given line.
- 117. Two oblique lines from the same point in the perpendicular to a given line, cutting off equal segments from the