AN ELEMENTARY TREATISE ON THE THEORY OF DETERMINANTS: A TEXT-BOOK FOR COLLEGES

Published @ 2017 Trieste Publishing Pty Ltd

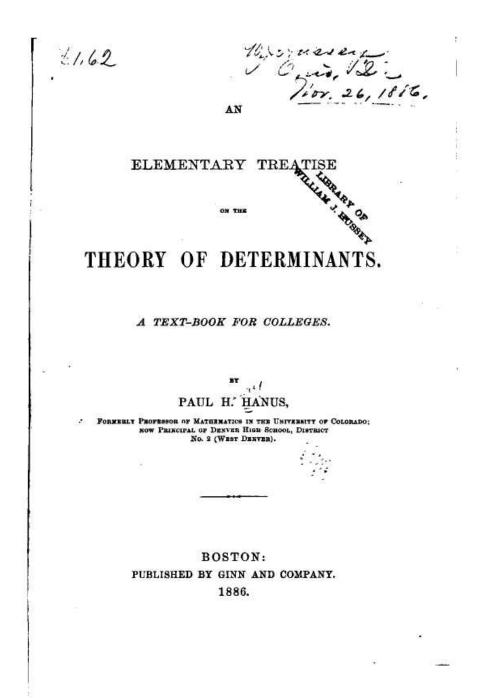
ISBN 9780649053766

An Elementary Treatise on the Theory of Determinants: A Text-Book for Colleges by Paul H. Hanus

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017


This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

PAUL H. HANUS

AN ELEMENTARY TREATISE ON THE THEORY OF DETERMINANTS: A TEXT-BOOK FOR COLLEGES

Trieste

Entered, according to the Act of Congress, in the year 1886, by PAUL H. HANUS, in the Office of the Librarian of Congress, at Washington. 1

.

.

137337 - 1377

88

8 •

J. S. CUSHING & Co., PRINTERS, BOSTON.

100

÷.

Hussey Hussey 1-17-30

05-12-311121

PREFACE.

•

THE importance of a knowledge of DETERMINANTS to all who extend their reading beyond the elements of mathematics, and the fact that most modern writers employ the determinant notation, have led to the belief that an American work on Determinants might satisfy a growing demand.

This is a text-book, and not an exhaustive treatise. Enough is given, however, to enable the student to use the determinant notation with ease, and to enable him to pursue his further reading in the modern higher mathematics with pleasure and profit.

The book is written with reference to the wants of the private student as well as to the needs of the class-room. The subject is at first presented with great simplicity. As the student advances, less attention is given to details. More than half the volume is devoted to applications and special forms, that the reader may get some notion of the power and utility of determinants as instruments of research.

Throughout the work care has been taken to show how each new concept has been evolved naturally; and, whenever it is thought advisable, a special case precedes the general discussion.

The work has been written in the far West, where contact with others in the same field was practically impossible. I

PREFACE.

shall therefore be grateful for any notification of errors that may have escaped detection.

My thanks are due to Messrs. J. S. CCSHING & Co., of Boston, for great care and patience manifested in the preparation of the plates.

Among the works consulted most assistance has been derived from the following. All the works named have been used freely.

- Matzka.— Grundzüge der systematischen Einführung und Begründung der Lehre der Determinanten.
- Baltzer.-- Theorie und Anwendung der Determinanten (Fünfte Auflage).

Günther. - Lehrbuch der Determinanten-Theorie (Zweite Auflage).

Diekmann. - Einleitung in die Lehre von den Determinanten und ihrer Anwendung auf, etc.

 Dostor. — Éléments de la Theorie des Déterminants avec Applications, etc. (Deuxième edition).

Hotiel - Cours de Calcul Infinitésimal.

- Soott. A Treatise on the Theory of Determinants and their Applications, etc.
- Burnside and Panton. The Theory of Equations, with an Introduction, etc.

Muir. - A Treatise on the Theory of Determinants.

I am especially indebted to the last two works for many examples.

PAUL H. HANUS.

1

٠

BOULDER, COL., May, 1886.

iv

CONTENTS.

ï

ŧ

•

,

.

CHAPTER I.

PRELIMINARY NOTIONS AND DEFINITIONS.

ABT.											PAGE.
1.	Discovery o	f De	term	inant	з.			•2		$\partial \mathbf{x}$	1
2-7.	Determinar	ats pr	odu	ed b	y elin	ninat	ing t	he un	know	ns	
	from a s	ysten	of a	simul	taneo	ous e	quatio	005	3		2-8
8-10.	Values of t	he ur	kno	wns i	n det	ermi	nant	form		800 610	8-10
9.	Change of a	sign		323	•:	180					9
11.	Notation			•		*		•			11-12
12-14.	Expansions	with	ı squ	are n				•			13
15.	Rule for ex	pand	ing a	a dete	rmin	ant o	of the	third	orde	r.	14
	Examples	2			1	<u>.</u>					14-16

CHAPTER II.

GENERAL PROPERTIES OF DETERMINANTS.

16-19.	Definition and notation							17 - 20
20.	Corollaries							20
21.	Inversions of order .				200			20-21
22.	Number of terms in a det	erm	inant		0.000	•3		21
23-24.	Corollaries; expansions				3.0			22-23
25.	If the rows in order are n	ade	the co	lumn	s in (order,	etc.	23
26.	Number of positive and n	egat	ive ter	rms	•		٠.	24
27.	Interchange of two parall	el li	oes .			•		24

CONTENTS.

ART.			PAGE.
28.	Two identical parallel lines		25
29.	Cyclical permutations		25 - 26
30.	Corollary		26
	Examples		27
31,	Every element of a line multiplied by the sar	ne	
	number	12	27
32-33.	Corollaries		28
34-35.	Decomposition of determinant with polynomial e	le-	
	ments		28-29
36.	Converse of 34		30
37.	Transformation by addition of parallel lines .		30-31
38.	Minor determinants, or Minors	2	31-32
39.	Expansion of determinant as linear function of t	he	
	elements of one line		32
40.	Coefficient of any element in the expansion of	a	
	determinant		33-34
41-44.	Corollaries; expansions		34-36
	Examples	8	36-40
45.	Elements of a line multiplied by first minors of corr	e-	
	sponding elements of a parallel line	S.,	40-41
47.	Expansion in zero-axial determinants	50 ••	41-42
48-49.	Simplification by taking each consecutive pair of cl	e-	
	ments in the first row, etc.	27-0 20	43-44
	Examples		45-46
50-54.	The product of two determinants		46-53
	Examples	1	53-56
55.	Laplace's Theorem (expansion)	ः •	56-57
57.	Product of a determinant by one of its minors .	ा स	58-60
58.	Rectangular Arrays or Matrices (product of) .	2	61-63
59-62.	The Reciprocal or adjugate determinant	a:	63-68
	Examples		69-71
63.	Special expansions (including Cauchy's Theorem		00-11
00.	Parameter III A	,	71-76
		•	11-10

vi

**

CON	TEN	TS.

ART.						PAGE.
64.	Solutions of certain determinant	equa	tions	э.	•3	76-78
65-66.	Differential of a determinant		÷.	24	. 3	79-81

CHAPTER III.

APPLICATIONS AND SPECIAL FORMS.

82-86		14				20	÷.	- e		uations	eq	
	en-	depe	ot in	e no	n ar	sten	e sv				100 61	71-72.
86	25									nt.		
	es	n, do	as 1	m	lone	and	= 0,	$= m_{n-1}$		$= m_9 =$	If m	78.
87	•	1999-1999 199	58003 14				0.00			t .		
	us	eneo	mog	ho								74-78.
87-92		15	. `							uations		
	10-	hom	of	em	syst	а	for	Δ=0	on	conditi	The	77.
91					•	•	÷.	tions	qua	neous e	ge	
	ng	taini	cont	ons	uati	eq	en i	led wh	lfi	ition fu	Cond	79.
92-93	•	::•		1.9	meo	ulti	sin	ns are	NOR	-1 unk	n-	
93-94	•	y 79	ns b	tio	equa	ple	f sin	stem o	sy	ion of a	Solut	80.
94	53		•		÷.,	10	79	tion of	lica	her app	Anot	81.
95-97	2°		n	tio	mina	f eli	ilt o	he res	as t	Matrix	The	82-83.
98-110					essea	proc	ing	preced	of	ications	Appl	84-89.
110-126						3.00	nts	limina	or F	ltants, o	Resu	90-100.
111-112	•					ion	inat	of elin	od	's Meth	Eule	91.
113-114		÷.			2			bon	leth	ster's M	Sylve	92.
114-118	1		÷		2		chy)	l (Cau	tho	ut's Met	Bezo	93.
118-121		1			ι.	cote	the r	ms of	ter	ltant in	Resu	94-95.
121-122							t	esultar	R	erties of	Prop	96.
122-126					thod	Me	ter's	Sylves	of	ications	Appl	97-100.
126-129		3	÷		X	n	atic	an equ	t of	iminant	Disci	.01-102.
	ns	uatio	s equ	eou	ogen	om	of 1	ystem		ltant of	Resu	103.
	nđ	seco	the	s of	ne iz	nd c	иг, ал	re lines	l a	ten $n-1$	w	
129-130		÷.								gree	de	

£.....

¥

ï

-

.

•

1

vii