PRINCIPLES OF MODERN GEOMETRY, WITH NUMERIOUS APPLICATIONS TO PLANE AND SPHERICAL FIGURES; AND AN APPENDIX, CONTAINING QUESTIONS FOR EXERCISE. INTENDED CHIEFLY FOR THE USE OF JUNIOR STUDENTS

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649086764

Principles of modern geometry, with numerious applications to plane and spherical figures; and an appendix, containing questions for exercise. Intended chiefly for the use of junior students by John Mulcahy

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

JOHN MULCAHY

PRINCIPLES OF MODERN GEOMETRY, WITH NUMERIOUS APPLICATIONS TO PLANE AND SPHERICAL FIGURES; AND AN APPENDIX, CONTAINING QUESTIONS FOR EXERCISE. INTENDED CHIEFLY FOR THE USE OF JUNIOR STUDENTS

Trieste

PREFACE.

The object of these pages is to lay down and illustrate the more elementary principles of those Geometrical Methods which, in recent times, have been so successfully employed to investigate the properties of figured space.

The importance of the principles in question seems to render it advisable that the student should enter on their application at an early period of his progress; and, in accordance with this view, examples in Plane and Spherical Geometry are here given in considerable numbers.

The scope and extent of the present work may be collected with tolerable accuracy from the Table of Contents ; but it is necessary to state, for the information of the reader, the amount of Mathematical knowledge which he is supposed to possess. The preliminary Propositions required for the perusal of the first five Chapters are to be found, with few exceptions, in the first six Books of Euclid's Elements. Some occasional deductions, involving the formulæ of Plane Trigonometry, are appended to these Chapters in the form of Notes. In the sixth Chapter the fundamental notions of Algebraic Geometry are re-The seventh, eighth, ninth, and tenth Chapferred to. ters presuppose an acquaintance with the ordinary principles of Spherical Trigonometry; and in the last two Chapters some of the properties of Curves of the second degree are assumed.

PREFACE.

From this statement it will be gathered, that the work is in a great degree of a *supplementary* nature, and that the subjects embraced have some diversity of character. It has been attempted, however, to preserve throughout a certain unity of design, and a due connexion of the various parts.

Those who are acquainted with the writings of Poncelet and Chasles will readily appreciate the extent to which the author has borrowed from these distinguished geometers in the present publication. He is also indebted to the Additions contained in Professor Graves's Translation of Chasles's Memoirs of Cones and Spherical Conics; and on several occasions he has consulted with advantage Dr. Salmon's Treatise on Conic Sections. It is to be added, that many of the examples throughout the work, and of the questions in the Appendix, are taken from the Examination Papers of Trinity College, Dublin.

iv

. TRINITY UNTRAITY LIBEARY, S.N.....S.H......No.

Distant

CONTENTS.

CHAPTER I.

HARMONIC PROPORTION AND HARMONIC PENCILS.

													10,000
Harmonic Propert	ion		49°	$\mathbf{k}^{(i)}$	98	33	(4)	(÷	36	÷.	(\mathbf{i})	- 36	1
Examples on Har	monie	Prop	ortiou		200	:+:	(*)	4	00	-	194	10	4
Harmonic Pencils		10		12	- 26	21	22	- 22	- 2	2	<u>.</u>		7
Transversals	105	÷	10	12	÷	10	140	1	- 2			32	8

CHAPTER II.

ANHARMONIC RATIO AND INVOLUTION.

Anharmonic Ratio	23	40	4	41	(¥)	32		26	13
Examples on Anharmonic Ratio	¥3	83	32	32	(4)	90	÷.		15
Copolar Triangles	10		30	*	*		+ :		18
Anharmonic Properties of the Circle	33	23	- 22	12	1	+	+	4	19
Problems relating to Anharmonic Ratio	43	40	43	¥6	- 4	- 60		36	22
Hexagon inscribed in a Circle .	<u>+</u> 22	+ -	10	*0	30				24
Involution	32	23	10	22	Ш.	15	1	4	26
Examples on Involution	82	100	4	43	÷25	36			29

CHAPTER III.

POLES AND POLARS IN RELATION TO A CIRCLE.

Poles and Polars	Q 1	8	22	÷.	33	58	37	36			32
Polar Properties of Quadrilaters	als .	e C	92	60	56	÷2	(w)	-	96		\$5
Method of Reciprocation .			+-		*:				-		37
Problems relating to the Theory	of P	olars	e ^{nne}	1	81	÷.	32 -		33	÷.	44

CHAPTER IV.

THE BADICAL AXES AND CENTRES OF SIMILITUDE OF TWO CIRCLES.

The Radical Axis .		22	1	÷3	- Q.	20	- 27	12	121	- 22	4	51
The Radical Centre	2		¥2	43	- 22	22	343	÷.	(*)	100		57
Centres of Similitude	12	20	10		10	-	3.2	35	20	(\mathbf{x})	:+:	59
Axes of Similitude		20		\$	- 11		21	2	20	12	22	64

÷

CONTENTS.

CHAPTER V.

ADDITIONAL EXAMPLES ON THE SUBJECTS CONTAINED IN THE FIRST FOUR CHAPTERS.

							1	PAGE
Additional Examples on Harmonic Proportion	and	Harmo	nie	Pencils	1	12		66
Additional Examples on Transversals	127		14	1	S.,	24		69
Additional Examples on Anharmonic Ratio	19	33	4	10	0		0.00	75
Additional Examples on Involution .	25	23	11	11			1.53	78
Additional Examples on the Theory of Polars	14					15		80
Additional Examples on Radical Axes and Cen	itres	of Sin	ulli	tude		0.00		90

CHAPTER VL

THE PRINCIPLE OF CONTINUITY	12	12.9	22	0.000	1000	122	50)	1.0	- 91	Ş
-----------------------------	----	------	----	-------	------	-----	-----	-----	------	---

CHAPTER VII.

ELEMENTARY PRINCIPLES OF PROJECTION.

Method of Projection	(*)	1.0	2.2	2011	1000	1.00	100	1.11	10	+15		109
Examples on Projection	S	2	1.1	14	121	1.1	33	.51	2	23	- 20	113
Projection of Angles	÷.		200	0.40	1.9	140	1.16	60	12	410	- 20	116

CHAPTER VIII.

SPHERICAL FENCILS AND SPHERICAL INVOLUTION.

Anharmonic Properties of Four Planes	- 60	62	41)	10	80	¥5	52	- 33	117
Anharmonic Ratio on the Sphere .	1.000	125	*10	200	80		(4)		119
Harmonic Properties on the Sphere .		20	10	- 33	- 33	1			121
Auharmonic Properties of a Leaser Cir	ele	45	10	40	- 22	2	1	1	127
Spherical Involution	*1	+3	10	\mathcal{X}	3.5	10	÷.:	30	129

CHAPTER IX.

POLAR PROPERTIES OF CIRCLES ON THE SPHERE.

Polar Properties of Lesser Circles	872	+ 7	10	365	10	14.1		30	133
Method of Reciprocation on the Sphere		÷.					(iji)		140
Supplementary Figures	111 111	÷.	÷.	- 11	- 20	- 23	\$ 2	붋	142
Examples on Spherical Reciprocation	+	100	10	343	14	æ	÷.		145

CHAPTER X.

BADICAL AXES AND CENTRES OF SIMILITUDE ON THE SPHERE.

The Radical Axis on the Sphere	÷.:	362	10	30	(#C)	(e)	(#)	*	30	152
The Radical Centre on the Sphere	41	. S.	2	-						158
Centres of Similitude of Two Lesse	r Cir	cles	4	141	11	1	12		- 44	151
Axes of Similitude on the Sphere	83	85		32	36	31	+	÷.		158

vi

CONTENTS.

CHAPTER XI.

PROPERTIES OF THE SPHERE CONSIDERED IN RELATION TO SPACE.

PROPERTIES OF												PAGE
Poles and Polar Planes		120		1	$\frac{1}{4}$	÷2	- 20	35	12	÷2	÷.	159
Reciprocal Surfaces		(141)	0.0	411	88		82	(6)		98		162
Stereographic Projection			1.42						*:	(*)	+	165
Inverse Surfaces .	27	1.0	E.	1					11	11	-	167

CHAPTER XIL

PROPERTIES OF PLANE AND SPHERICAL SECTIONS OF A CONE.

	÷2	60	63	¥16	411	¥97	83	18	(\mathbf{x})	91	176
0.0		1.1	1.1	+15	100		32	340	22	-	172
				1.	23	12	1	22	17	4	181
lane	and	Sphe	rical	Conics		10	£3	10	(a)	3	182
											197
		lane and	lane and Sphe	lane and Spherical	Plane and Spherical Conics		Plane and Spherical Conics	Plane and Spherical Conics			

APPENDIX.

Questions	on Ele	menta	ry Pla	ane G	eomet	ry	1000	0	10	8 2	83	\sim	*	205
Questions relating to Circles on the Sphere .										÷.)	2	13	- 63	213
Miscellane	ons Qi	estior	is on t	the fo	regoin	g Sub	jects	12	10	¥2	2	4	ŝ	217
				-		-		-	-					
INDEX	24	22	34		34	100	140	. A	10	63	÷16	¥3	•5	225

PRINCIPLES OF MODERN GEOMETRY.

CHAPTER I.

HARMONIC PROPORTION AND HARMONIC PENCILS.

ART. 1. THREE quantities are said to be in harmonic proportion, when the first is to the third as the difference between the first and second is to the difference between the second and third. Thus, 3, 4, 6, are in harmonic proportion.

It follows from this definition, that the three quantities will still be in harmonic proportion when their order is inverted, or when they are altered in the same ratio. Thus 6, 4, 3, are in harmonic proportion, and so also are 3m, 4m, 6m, m being any number.

Three quantities are said to be in arithmetic proportion, when the difference of the first and second is equal to the difference of the second and third.

Three quantities are said to be in geometric proportion, when the first is to the second as the second to the third; that is, when they are proportional in the sense of the Fifth Book of Euclid.

The relation between these three kinds of proportion may be thus exhibited :----

In arithmetic proportion the differences are equal; that is, they are as the *first* to *itself*. In geometric proportion they are as the first to the *second* (by conversion and alternation). And in harmonic proportion they are as the first to the *third*.

2. Let a right line AB, be cut internally at O, and externally at O' in the same ratio; that is, so $\underline{A} = \underbrace{O \ B} O'$ that AO: BO:: AO': BO'; then,