DIRECT-ACTING STEAM PUMPS

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649562718

Direct-Acting Steam Pumps by Frank F. Nickel

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

FRANK F. NICKEL

DIRECT-ACTING STEAM PUMPS

DIRECT-ACTING STEAM PUMPS

McGraw-Hill Book Company

Publishers of Books for

The Engineering and Mining Journal Electrical World

Engineering Record Engineering News

Railway Age Gazette American Machinist

Signal Engineer American Engineer

Electric Railway Journal Coal Age

Metallurgical and Chemical Engineering

DIRECT-ACTING STEAM PUMPS

BY

FRANK F. NICKEL

ASSOCIATE IN MECHANICAL ENGINEERING, COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

FIRST EDITION

McGRAW-HILL BOOK COMPANY, INC. 239 WEST 39TH STREET, NEW YORK 6 BOUVERIE STREET, LONDON, E. C. 1915 COPYRIGHT, 1915, BY THE McGraw-Hill Book Company, Inc.

TER MAPLE PRESS YORK PA

6505665

196410 JUL 12 1915

-VK

PREFACE

The direct-acting pump has received scant attention from writers on pumping machinery. While this class of machinery in general is looked upon abroad with contempt and as a sort of necessary evil, in this country its advantages over other types of pumps were recognized early, even in the face of lower economy in fuel. The abundance of fuel and the scarcity of skilled labor, no doubt, were deciding factors in this development.

Within the past fifteen years the field has been encroached upon greatly by the centrifugal pump, but there are many conditions, especially where the exhaust steam is usable, in which the direct-acting pump is unlikely to be displaced. Evidence of this is found in many modern plants where direct-acting pumps are found side-by-side with centrifugal pumps, each supplying the service for which it is best fitted.

The author has considered it a duty to preserve the history of the development of this class of pump and the results of his experience, extending over thirty years in this line, and is confident that this book will supply much information that is looked for elsewhere in vain. In the few cases where material was used that is not original, due credit is given.

Grateful acknowledgment is made to Mr. Alfred D. Blake, Associate Editor, *Power*, for his valuable assistance in editing and for many excellent suggestions.

FRANK F. NICKEL.

EAST ORANGE, N. J., 1915.

8 ± € :: 40 2 0

CONTENTS

															T	AGI
PREI	ACE	583	. 8	3 1	19.5	50	2 5	195	53	35			÷	٠	,:70	1
		СН	AP	TEF	1 3											
	DEVELOPMENT	. 08	THE	e D	TP TO	CYT-	ACT	TV.	a I	Pro	up.					
RTIC				-			no.		•	-	•					
1.	Spring-thrown Valve .	700				(3)	7	8	4		Ç	200	4		43	- 1
2.	Steam-thrown Valve	140	.			9.	833			-83		4000	4		Q.,	.50
3.	"D" and "B" Valves .		40104	- Kine		1,040	toro-			400		41004		226	•	
4.	Exhaust-thrown Valve .			1		87	1							N.		1
5.	Relief Valve Motion	3630	1 13			190	600	8 8	89	-3		# 55		53	-0	J.
6.	Plunger and Ring Type	*	1901	150			193	ę s				633	ť		:	95
		СН	IAI	TE	R I	II										
	PER	FOR	MA	NCE	FA	CT	ore									
7.	Efficiencies	188	i 12		8 5	122	332	8 8	100	(0)	ij.	20012	20	::2	23	1
	Volumetric Efficiency .													8	88	1
9.	Hydraulie Efficiency					.83	2000			200	70	200	- 0	77 E	-	1
10.	Indicated Pump Efficien	ev		6730		3335		5 5	000	3.5		2000		007		1
11.	Mechanical Efficiency .		1		1	8	3	1 1	8	- 101			8		- 88	1
12	Total Efficiency		5006	:200		98	000	 a a		oils	-	20003	- 5	voe	86	1
13.	Thermal Efficiency		ALC: N			anti			ook ook	***		2000		00 5	9.0	ī
14.	Suction Lift	-125	203	200		az.	(00)	2 2	::7:	200	12			505	20	î
15	Velocity Head					ŝ		3 3	8				į		1	1
	Entrance Head														***	1
17	Friction Head	200-0	53.05	633		3030	•	5 5	100	# 2	*	*.50	-	•	***	1
18	Losses in Bends		1	- 100	1	Š		t	*	1	*		ō			î
10	Loss through Suction Va	Itra		봻		8		9	•	1	3				•	1
	Presence of Air															2
21	Air and Vacuum Chamb		* 00	500		্	•100		10.5					0.3		5
99	Capacity		•				100	3 5		*	3		•			- 5
	Speeds										-		•			-
	Power													*		Š
95	Indicated Horsepower of	41.	. 9		T.		100			•	•	680				5
20.	Brake Horsepower	· ·	0 0	esace		au	1	1		*		1227	1	97		2
	Indicated Horsepower of											4000		4		2
															*	2
20.	Pump Horsepower	1153	•	186			13		*		16		Š	1	*	- 177
29.	Water or Developed Ho	rsep	OW	er .	:		100	1 2		3	3					2
30.	Pipe Sizes			1000							-					2
31.	Starting Pipe			• (0)		٠	•	8 8		٠		800		*	*	2
32.	Priming Pipes		:68	530	9 5	*	58			÷		100	3	88.	÷	2
33	Friction in Pipe Lines															3