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PREFACE

This book was undertaken at the suggestion of my lamented
volleague Professor Benjamin Osgood FPeirce, end with the promise
of his collaboration. His untimely death deprived me of his invalu-
able assistance while the second chapter of the work was still
unfinighed, and I have been obliged to complete my task without
the aid of his remarkably wide and accurate knowledge of Mathe-
matical Physics,

The books to which I am most indebted in preparing this treatise
are Thomson and Tait's “Treatise on Natural Philosophy,” Wataon
and Burbury’s * Generalized Cobrdinates,” Clerk Maxwell’s ™ Elee-
tricity and Magnetism,” E. J. Bouth’s “Dynamies of a Rigid
Body,” A. G. Webster’s * Drynamies,” and K. B. Wilson’s * Advanced
Caleulus.”

For their kindness in reading and eriticizing my manuscript T am
indebted to my friends Professor Arthur Gordon Webater, Professor
Perey Bridgman, and Professor Harvey Newton Davis,

W. E. BYERLY
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