ELEMENTARY TREATISE ON THE DIFFERENTIAL AND INTEGRAL CALCULUS

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649183692

Elementary treatise on the differential and integral calculus by G. W. Hemming

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

G. W. HEMMING

ELEMENTARY TREATISE ON THE DIFFERENTIAL AND INTEGRAL CALCULUS

Trieste

AN ELEMENTARY TREATISE ON THE

DIFFERENTIAL AND INTEGRAL CALCULUS.

Cambridge : Printed at the University Press. FOR MACMILLAN AND CO.

> London: GEORGE BELL. Budia: HODGES AND SMITH. Obinburgh: EDMONSTON AND DOUGLAS. Gizegow: JAMES MACLEHOSE. Orford: J. H. PARKER.

AN ELEMENTARY TREATISE ON THE DIFFERENTIAL AND INTEGRAL CALCULUS,

FOR THE USE OF COLLEGES AND SCHOOLS.

HEMMING, M.A., BY G.

FELLOW OF ST. JOHN'S COLLEGE, CAMBRIDGE.

SECOND EDITION, WITH CORRECTIONS AND ADDITIONS.

> Cambridge : MACMILLAN & CO. 1852.

PREFACE TO THE SECOND EDITION.

MANY corrections and additions have been made in the present Edition, chiefly with the view of fitting it for younger students by bringing out the leading principles of the subject with greater clearness. Some additional illustrative examples are given, but for purposes of practice the student is still referred to Gregory's Collection of Examples.

Lately Published, by the same Author, 12mo. cloth, 4s. 6d.

FIRST BOOK ON PLANE TRIGONOMETRY, comprising Geometrical Trigonometry, and its Application to Surveying, with numerous Examples for the use of Schools.

CONTENTS.

CHAPTER I.

	Variables and Functions.				
Article				Page	
1-7.	Definitions of variables and functions .		- 8	. 1	
8.	Equations of one or more independent variables	3¥.	- 62 °	7	

CHAPTER II.

Limiting Values of Functions.

9.	Definition and explana	tion	of a	lin	nitin	g va	lue						8
10,	Axioms respecting lim	iting	val	uca	000230	1012	11.		\odot				11
11.	$l_{PQ=0} \frac{\operatorname{arc} PQ}{\operatorname{chord} PQ} = 1$	÷		2				9 3				æ	11
12.	$lt_{s=0} \frac{\sin x}{x} = 1 \qquad .$		8		ŝ		•		•		•		12
13.	$\mathcal{U}_{s=0} \frac{x^n-1}{x-1} = n .$	λĿ		a		×		83		34		×	12
14.	$lt_{e^{20}} (1+x)^{\frac{1}{r}} = e$.				£.		•						13
15.	$\mathcal{U}_{a=0}\frac{\log\left(1+x\right)}{x} = \frac{1}{\log a}$	•				×		23		86		8	13
16.	$lt_{x=0} \frac{a^x - 1}{x} \approx \log a .$												14

CHAPTER III.

Differentiation.

17.	Definition of differentials and differential coefficients .	14	15
18.	Differentials proportional to the rates of increase of the variable	les	17
19.	Geometrical illustration of the definition		17
20-44.	Differentiation of elementary functions		19
45-51.	Differentiation of a function + +	12	27
52.	Examples		30
53.	Summary of results		31

CONTENTS.

CHAPTER IV.

Integration.

ATISCIE			r.sge
54.	Definition of integration		34
56, 57.	Addition of a constant in integration		35
58-65.	Integration of elementary functions	36	36
66.	Summary of results		40
67.	Integration by algebraical transformations		41
68, 69.	Integration by parts		42
70-76.	Integration of rational fractions	- 20	43
78.	Rationalization		49
79, 80.	Criteria of integrability of $x^{-}(a+bx^{*})^{p} dx$.	•	49
81-87.	Integration by reduction		51
88.	Exceptional cases		56
89.	Integration of $\sin^n x \cos^n x dx$ in particular cases .		57
90, 91,	Integration of the same function by reduction		57

CHAPTER V.

Successive Differentiation.

92.	Definition of an independent variable	60
93.	Geometrical illustration	61
94, 95.	Successive differentiation	62
96-98.	Relations between successive differentials and differential coeffi- cients, when the independent variable is general	63
99.	Form of the above relations when the quantity (x) , under the functional sign, is independent variable	64
100,	Examples	65
101-104.	Formation of differential equations .	67
105.	Homogeneity of differential equations	70
106.	Change of independent variable	70
107.	To pass from an equation among differentials, with x as inde- pendent variable, to one among differential coefficients	
	with respect to x, and the converse	70
108, 109.	To pass from a general independent variable to x, and the converse	71
110.	To pass from a general independent variable to any function of x	71
111-113.	To change the independent variable from x to any function of x	72
114.	To change the independent variable from x to y .	74
115, 116.	Illustrations and examples	74

CHAPTER VI.

Differentiation of Functions of several Variables and Implicit Functions.

117, 118. The total differential of a function of two connected variables equal to the sum of the partial differentials

viii

78

CONTENTS.

Article		Page
119-121.	Examples	80
122.	Extension to functions of any number of variables	82
123-125.	Implicit functions of one independent variable	82
126-128.	Relations between corresponding implicit and explicit functions	84
129.	Examples	86
130-132.	Definition of the total differential of a function of two inde-	
10710 - 10 4 018	pendent variables	87
133, 134.	Another form of the definition	92
135.	Geometrical illustration	94
136.	Successive total and partial differentiation	95
137.	Order of successive partial differentiation immaterial .	96
138.	Notation for successive differentials and differential coefficients	97
139-142.	Relations between successive total and partial differentials	
	and differential coefficients, with general independent variables	99
143.	The same relations, with particular independent variables	101
144-146.	Change of independent variable in equations involving partial	
	differential coefficients	101

CHAPTER VII.

Development of Functions.

147-149.	Taylor's theorem. Limits of the remainder. Examples	104
150, 151.	Stirling's theorem. Examples	107
152, 153.	Failure of Taylor's theorem	108
154.	Other methods of expansion	110
155.	Extension of Taylor's theorem to functions of two variables	111
156.	$\frac{d^a f(x,y)}{dx^{a-d}y^{a-d}} = \frac{d^a f(x,y)}{dy^{a-d}dx^{a-d}} . \qquad .$	112
157.	Limits of remainder of the above series	112
158, 159.	Other forms of Taylor's theorem	113
160,	Lagrange's theorem	113
161.	Laplace's theorem	115
162,	Laplace's theorem deduced from Lagrange's	116

CHAPTER VIII.

Limiting values of Indeterminate Functions. Maxima and Minima values of Functions.

163.	Fractions of the form §	18					117
164, 165.	Fractions of the form $\frac{\infty}{\infty}$.	e 🖺 🔅					117
166.	Other indeterminate forms	- A		1.1230	1 . S		119
167-171.	Maxima and Minima of Fun	ctions o	f one	independ	dent var	iable.	
	Geometrical illustration .						119
172-177.	the second second second second second			or more	indeper	ndent	
	variables. Geometrical illu	istration	۱.				123
178,	Examples	(B		S	÷.	2242	129