ELEMENTS OF THE KINEMATICS OF A POINT AND THE RATIONAL MECHANICS OF A PARTICLE

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649209675

Elements of the kinematics of a point and the rational mechanics of a particle by G. O. James

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

ELEMENTS OF THE KINEMATICS OF A POINT AND THE RATIONAL MECHANICS OF A PARTICLE

Trieste

7. Morley

ELEMENTS

OF THE

KINEMATICS OF A POINT

AND THE

RATIONAL MECHANICS OF A PARTICLE

BY

G. O. JAMES, Ph.D.

Instructor in Mathematics and Astronomy Washington University, St. Louis

> FIRST EDITION FIRST THOUSAND

NEW YORK JOHN WILEY & SONS London : CHAPMAN & HALL, Limited 1905

AT LOS AND F

Mathomatical Sciences Library

INTRODUCTION

This book is intended for those who expect to continue the study of mechanics beyond an elementary course, and is meant to serve as an introduction to advanced treatises. For this reason special attention has been given to the principles and order of presentation, while the applications have been left almost entirely aside. No attempt has been made to avoid such mathematical terms and formulæ as seemed necessary, but those problems requiring a knowledge beyond the calculus and elementary differential equations have either been entirely omitted, or approximate solutions only have been given. Foucault's pendulum has been treated in this way. Especial attention has been given to relative motion and to motion on the Earth's surface, and to obtain a proper orientation in the subject H. J. Johnson - 6-26 the problems chosen have been made as general as possible. G. O. JAMES.

WASHINGTON UNIVERSITY, May 2, 1904.

Math

iii

463707

PART I

KINEMATICS

CHAPTER I

THEORY OF VECTORS

A1210.000 7	raus.
1. Vectors	1
2. Equipollence of two vectors and notation	2
3. Geometric sum.	3
4. Analytic expression of geometric sum	- 5
5. Geometric difference	8
6. Analytic expression of geometric difference	9
7. Decomposition of a vector.	9
S. Analytic expression of components.	10
9. Projection of a vector on a line	11
10. Analytic expression of geometric sum referred to axes	13
11. Geometric derivatives	14
12. Projection of the geometric derivative of a vector on a plane and	
on an axis	16
13. Projection of the geometric derivative of a vector on the vector	
itself	19
14. Applications	19

CHAPTER II

KINEMATICS OF A POINT. GENERAL THEOREMS

15.	Definitions.	Rest and motion	22
			23
		v	

		PAGE
17.	Motion of a point. Path	23
18.	Equations of motion	23
	Rectilinear motion	24
20.	Units of time and of length	25
21.	Case where it is necessary to specify the units	25
	Homogeneous equations	26
23.	Change of units	26
24.	Uniform rectilinear motion. Velocity	28
	Equation of uniform motion	29
26.	Accelerated retilinear motion	30
27.	Numerical examples	30
28.	Knots and nautical miles	31
29,	Equation of accelerated motion in terms of the mean velocity	32
30.	Acceleration	32
31	Equation of uniformly accelerated motion	33
32,	Discussion of the motion by means of the equation of motion	34
33.	Case where the displacement is taken as the independent variable	35

CHAPTER III

APPLICATIONS TO ORDINARY RECTILINEAR MOTIONS

A. UNIFORM MOTION

34.	Properties of uniform	motion	37
35.	Problem		38

B. UNIFORMLY ACCELERATED MOTION

36.	Properties of uniformly accelerated motion	39
37.	Remark	42
	Equations obtained by taking the space described as independent	
	variable	42

C. PERIODIC MOTIONS

39.	Equations of periodic motion	43
40.	Equations of harmonic motion	44
41.	Amplitude, elongation, frequency, argument, phase	45
42.	Velocity and acceleration.	47
43.	Discussion of the motion	47
44.	Influence of the phase	49

vi

CHAPTER IV

RELATIVE MOTION ALONG A LINE

ARI	ICLS	L'AON.
45.	Relative motion	51
	Equation of relative motion	52
47.	Relative velocity and acceleration	52
48.	Apparent motion	53
	Convective motion	
50.	Simultaneous motions	55
51.	Composition of harmonic motions of same period	56
52.	Representation of the amplitude and phase by a vector	57
53.	Equation of the resultant motion	58
54.	Vibrations of different periods	59

CHAPTER V

VELOCITY AND ACCELERATION IN CURVILINEAR MOTION

A. VELOCITY

55.	Displacement	61
56.	Velocity	62
	Algebraic value of the velocity	
58.	Projection of the velocity on the displacement	64
59.	Geometric representation of the path	65
60.	Projection of the velocity on any axis	65

B. ACCELERATION

61.	Acceleration. Hodograph.	66
62.	Projection of the acceleration on any axis	67
63.	Projection of the acceleration on the tangent and principal nor-	
	mal	67
64.	Projection of the acceleration on the binormal	68
65.	Condition that the acceleration be constantly tangential or nor-	
	mal to the path. Condition that the acceleration be con-	
	stantly zero	69
66.	Composition of motions along the same path	69

20

CHAPTER VI

ANGULAR AND AREAL MOTION. EQUATIONS AND GENERAL THEOREMS

AILT	TCLE	PAGE
67.	Angular displacement.	70
68.	Angular velocity	71
69,	Relation between linear and angular velocities	72
70.	Angular acceleration.	72
71.	Relation between linear and angular accelerations	73
	Areal velocity	74
	Extension of theorems already found	76
74.	Equations of motion. Units of time and displacement. Homo-	
	geneity.	76
75.	Equation of uniform motion	77
76.	Equation of uniformly accelerated motion	78
77.	Equation of motion when angular acceleration is not constant	78
78,	Properties of uniformly accelerated angular motion	78
79.	Periodic angular motion. Harmonic motion	79
80.	Relative angular motion	80
81.	Composition of harmonic angular motions of same period	82

CHAPTER VII

MOTION REFERRED TO COORDINATE AXES

82.	Important remark	83
83.	Projection of the motion on a plane and on an axis	83
84.	Projection of the velocity and acceleration	84
85.	Equations of motion referred to the coordinate axes,	85
>6.	Equations of the projected motion on the coordinate planes	86
\$7.	Projection of the path	86
88.	Equations of the projected motion on the coordinate axes	87
\$9.	Projections of the velocity,	87
	Equations of motion of the point which describes the hodograph	88
91.	Projections of the acceleration on the coordinate axes	88
	Résumé	89
93.	Most general motion in which the projected motions are uniformly	
	accelorated.	90
94.	Motion in which the projected motions are harmonic	91
95.	Rectilinear harmonic motion considered as the projection of uni-	
	form circular motion.	93

viii

CHAPTER VIII

RELATIVE MOTION. MOVING AXES

. 1. H	LUND
Fixed and moving axes	95
Equations of absolute and relative motion	96
Statement of the problem	96
Motion of the relative axes	96
Solution of the problem	
	Fixed and moving axes

PART II

MECHANICS

CHAPTER IX

MECHANICS OF A FREE PARTICLE

101.	Material point or particle	101
	Purpose of this book	102
	Problem of mechanics	103
104.	The rôle of observation and experiment	104
105.	Principles of mechanics	104
106.	The absolute axes. Isolated particle	104
	First principle of mechanics.	105
	Meaning of the first principle	
109.	Field of force	105
110.	Uniform field of force	106
111.		106
112.	Superposition of fields of force	106
113.	Second principle of mechanics	106
	Meaning of the second principle	
115.	Reaction of the particle on the field	107
116.	Third principle of mechanics	107
117.	Meaning of third principle	108
118.	Properties of the coefficients ρ_{ij} ,	108
119.	Definition of mass	109
120.	Force	110
121.	Observations on the notion of force	110
122.	Composition of forces. Resultant	111
123.	Decomposition of forces. Components	112
124.	Equilibrium of a free particle.	113