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THE INTEGRAL CALCULUS

SECTION ONE

On the Integration of the Powers of Trigonometrical Mﬁm

1. In performing the operation of intcprating a differential it
i5 upusl fo add the constant € to the result, becanse the integral
from which the differential has been derived may eontain some
constant quantity not affeeted by the variable; in which ease the
congtant would not be indicoted in the differentisl. In the follow-
ing Tables and Series the constant has been fully accounted for,
and the complete intcgrals are therein cxpressed, excepting in those
oases where the constant is particularly noted.

Tanie 1
Integrals of Even Powerg of ain xr.dx, to Radius I

Ssinte dz = x,

[rintzedy r- u;ﬂm-sma'.l
3 A — 3 eon z-sin ¢ — 2 cos ©-8in’c
Saints de = 5.4

15z — 15 cos z-sin ¢ — 10 cos z-sin's — B cos & sin'z,
2-4.6
JSeinfr-dx = (105 x — 108 cos z-gin x — 70 coa z-gin'
- 06 cos x-ain*z — 48 cos x-sin"z} + 2.4-8.8
Jain® . de o (D45 2 — 945 eos 2-5in 2 —~ 630 cos 2 sin’z
— 504 cos z-ain®s — 432 cos 2-sin’x — 384 cos x-sin'z)
+ 2:4:6-8:10

Seinte-dz =

2. This table may be carried to any extent by observing the fol-
lowing law of progression: '
Ssinng.dr = = 1fsin""z*d:lr— %mz-ﬁin"—*z,
b




6 THE INTEGRAL CALCULUS

and the table may be extended to negative values of m', by changing
this expression to

SEinm i dr - m”_‘ :

. 1 .
fsm‘t-d:z i cos z-sin™z; thus,

Sein~%-dr = — cotz+ O,

2 cotz + ﬂ'};
Jein-de = — f-f(,‘_
deotx Jeobz
- Seobx o — s RINZT Bin'E
SEin-%-dr = — T3 + 0.
deobz 1Boptx lHeotz
48 cob T + —— e -
] ginle sinde ainty
Jein8z-dx = — 357 +C‘

The value of (0 iz the aren of the fyll guadrant of ‘the eurvilingar
for ea.ch particular value of #; ibat is,

g=f” i di
(1]

Taure 11
Imtegrals of Even Powers of cos x-dx, to Radiug 1
Sooste dr mx. i
Soostr-dr = w

3x+ 3 ainz-cop 2 + 2 8in 7 oos’r
2-4

Seoste -y =

15z + 15 x-coa x + 10 &in 2-cos % +Ssi.n:|:-una'::.
2+4.6

JSeosbz-dx = (105x + 105 sin &+c08 & 4 70 sin z-cos'z
+ 56 gin proost 4 48 win 2-cos’e) + 2-4-6-8.
Jeoaz-de = (045 2 + 945 sin 2 -cos z + 630 sin z- cos®z +
504 sin 2 - cos’r 4 432 sin ¥ -cos'z + 384 sin T cos's)
+2:4-6.8:10
3. This table may be extended by the following law of progression:

Seostt-dx =

Jeosme-dr = e lfcm“"z-d:: + ;:—asin & cos™ Ly,

and for negative vulucs of 2, this exprmsiun may be changed to
Jeop™ip-dr = fem"'m dz —

sm T cos®lz,
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and from this we g;at
Jcos—ix-ds = tan z.

tan z
2.
Seoa™iz ds = 3 &
4tange  Btanz
B tan x + +
s T g _eos’z | comty
' 3-5
24 t!lnr 1Btany 15ianz
[oos—tz dx_‘mm # * GoRT cos’s |
3 5.7
TarLe IIT
Integrals of Odd Negative Powers of Cos x-dx, to Radiua 1
1+ sinz ’
1 - R s S
fcos—:c dz glug s

l4gnz tanzx
—ﬂz 1 -
S dr = lﬂgl SiNE ' eos T

1+4+ane 3dtanzy  2ianz

flog——— + +
s gt I —-ging loosz cofz
2.4
l4png  15tanzr  10tanz  Stanzx
e lﬁil‘}g — Wbz | cosx e fossp
sl 248 !
The lnw of progression ia
m 1 1 tansz
P o e
Tapue IV
Integrals of Odd Negative Powets of Sin x-dx, to Radius 1.
. 14 coax
Sen~ids = =3 log —coaa:."c'

41 l+eoms oota

Il—conx  mmz

gin dr-de = — + .
2
14cogx Seoftxs  Z2cotw
Sty = — #log 1— cosx ;-45{.11 z P.m"z I, §
L+tcoss  lieotz  10cotz SBcobz
fain":cdx-—;’llogl_m"ﬂx sin _sin'z “sin®z €
2:4-6 '
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The law of progression ia
g P B i BN B
sinmHz  m o+ 1) sinme m + 1 sin™z

The value of €' is the full quadrant of the curvilinear,

4. The value assigned to (7 in the integrals of Hr%""'_z“dx’ in

Tables I and IV, is readily derived from the following consideration.

Il we trace, for the full quadrani, the two curves, § = '_s;:[ﬂz' and

1 F 5 i ; ;
=———:h the: t f th of h
Y , having their origin at opposite ends of the axis of z, the

two curves will coincide throughout.  Therefore, the value of

fah:“:;'w’ given by Tables T and TV, simply measurcs negatively

the value given by Tables 1I and III for f;[’iTm-d.-c. Hence,

fsil:”xh"h meggures negatively the complement of the area of the

eurvilinear; so that, adding 1o 1his negative quantity the full quad-
rant of the curvilincar gives the proper integral. These remarks

equally apply to the eurves y = tan™r and ¥ = Elﬁx’ the integrals

L
of which are given on another page.

Series [
The integral of sin™x-dr, for any value of m, is 4-(1 — cosx)

- ‘g(l'— coa’x) + %(l — oos'e) — ?(l ~ sl + ...

where A, B, €, I . . . are the syccessive terms in the development
-1 = -
of the binomial (1 + 1)°T; namely, 4 =1; B="—3;
m—1m-3 , m-1m—-3m-35
Q=g 2 i

5. Series I lerminates with the term containing the mth power
of cosa, when m is o positive odd ioteger; otherwise it is infinite.
It therefore gives complete expreasions for odd positive powers of
sin x-dz.

Series 1T
The integral of cosz.dz, for any value of m, is 4 -sinz — F:;—sin’z
+%5i.t'i":z - ?sin’¢+ ... .where A, B, ¢, D, .. are the sue-
m—l

cessive terms of the binomis! (1 4+ 1) 2, as before.




