STRENGTH OF MATERIALS: A MANUAL FOR STUDENTS OF ENGINEERING

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649714575

Strength of Materials: A Manual for Students of Engineering by William Charles Popplewell

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

WILLIAM CHARLES POPPLEWELL

STRENGTH OF MATERIALS: A MANUAL FOR STUDENTS OF ENGINEERING

Trieste

STRENGTH OF MATERIALS

¥3:

20

- 34

÷.

.

38

3¥

÷0

a 1

x

STRENGTH OF MATERIALS

A MANUAL FOR STUDENTS OF ENGINEERING

BY WILLIAM CHARLES POPPLEWELL

M.SC. (VICT.), ASSOC. MEM. INST. C.R.

Lecturer on Strength of Materials, Theory of Structures, and Hydraulics, at the Manchester Municipal School of Technology; formerly Assistant to the Professor of Engineering in the University of Edinburgh; and Senior Assistant Lecturer in Engineering at the Yorkshire College

OLIVER AND BOYD EDINBURGH: TWEEDDALE COURT LONDON: 10 PATERNOSTER ROW, E.C.

PREFACE

THE greater part of the matter contained in the following pages is based on the notes of lectures given to the day and evening students at the Manchester Municipal School of Technology during the last five sessions.

The book is intended for the use of those students of engineering who are desirous of obtaining a working knowledge of the fundamental principles involved in problems of machine and structural design. It should be found useful to candidates for the Third and Honours stages of the Examinations of the Board of Education, the examination for the admission of Associate Members to the Institution of Civil Engineers, as well as the examinations in the Engineering Schools of the Universities.

It will be seen that special attention has been paid to the unequal distribution of stress, and to the limits of elasticity in iron and steel. Many of the examples quoted are taken from experimental results obtained by the writer or his students. It is also to be noted that the majority of the proofs given are similar to those used in most of the text-books.

The author desires to acknowledge his indebtedness to the many writers of books and scientific papers to which he has referred in collecting these notes. W. C. P.

MANCHESTER, 1907.

. r.

ŧ. 14 19**-**01 1 8 . 24.0 19 3.**3**2

CONTENTS

11.1

PAGE

1

CHAPTER I

STRESS, STRAIN, AND ELASTICITY

oad ;	Intens	sity of	Stress	: Strai	n. D	ifferent	Kind	s of
mm S	tress :]	Elastic	ity_Pla	sticity	; Hool	ke's La	w; You	ing's
lus f	or Direc	t Elas	ticity ;	Lateral	Contr	action	and Di	lata-
23	SS SS		0.012003 (C. 100		C. Deserve	energiernen St	and the second	
	s and orm S ilus f	s and Strain orm Stress : 1 ilus for Direc	s and Strain : Sin rm Stress : Elastic ilus for Direct Elas	s and Strain : Simple Str urm Stress : Elasticity—Ph	s and Strain : Simple Stresses. rm Stress : Elasticity—Plasticity dus for Direct Elasticity ; Lateral	s and Strain : Simple Stresses. Distri orm Stress : Elasticity—Plasticity ; Hool dus for Direct Elasticity ; Lateral Contr	s and Strain ; Simple Stresses. Distribution orm Stress : Elasticity—Plasticity ; Hooke's La dus for Direct Elasticity ; Lateral Contraction	Load; Intensity of Stress; Strain. Different Kind s and Strain: Simple Stresses. Distribution of Stre srm Stress: Elasticity—Plasticity; Hooke's Law; You ilus for Direct Elasticity; Lateral Contraction and Dil

CHAPTER II

DIRECT, TANGENTIAL, AND OBLIQUE STRESSES

Stress on an Area not at Right Angle	s to	the Axi	s of a	Body w	nder	
Simple Tension or Compression.	Eff	lect of t	wo Dir	ect Stre	eses	
at Right Angles : The Nature of						
Modulus of Rigidity ; Elasticity of	f Ve	lume or	Cubic	Elastic	ity;	
Relation between E, G, K .	•					15

CHAPTER III

STRESSES IN BEAMS-BENDING AND SHEARING ACTIONS

Distribution of Direct Stress in	8	Beam	Secti	on :	Moment	of	Resist	-	
ance; Moments of Inertia			8			2			25

CHAPTER IV

GRAPHICAL METHOD FOR DETERMINING THE MOMENT OF INERTIA

Moment of Inertia		• 1	 4		39
vli					

CONTENTS

CHAPTER V

DEFLECTION OF BEAMS

First Method ;	Second Method .	2	2.00	32	47
50 S					

CHAPTER VI

SHEAR STRESS IN LOADED BEAMS

Distribution	of SI	hear	Stress	in	Loaded	Beams.	Deflec	tion	Due to	
Shear.	Cont	inuot	as Bean	. 80		¥2	2 37	24	 34 	69

CHAPTER VII

RELATION BETWEEN LOAD AND STRESS IN A PRISMATIC BAR

The General	Pro	ble	m. Parti	cular	Case	s. In	stance	s of	Une	laups	
Stresses	due	to	Eccentric	Load	ling.	Meth	od of]	leas	arin	g the	
Strains		1		14	- 1970 -		•		163		78

CHAPTER VIII

PILLARS, STRUTS, OR COLUMNS

Strength of Pillar	s, Struts, or Columns .	28.	23	84	92

CHAPTER IX

TORSION AND SPRINGS

Elastic Circular Shaft; Angle of Twist of a Shaft; Horse-power Transmitted. Torsional Strength of Shafts in the Plastic State. Loads and Deformations of Springs: Helical Springs of Round Steel.

CHAPTER X

TORSION COMBINED WITH BENDING

The Effect of Torsion Combined with Bending. . . . 110

viii

99

1

PAGE

CONTENTS

CHAPTER XI

Se.

STRENGTH	OF	CYLINDERS	

Thin Cylinders ; Thick Cylinders	(*)	3÷	2	•	115

CHAPTER XII

RIVETED JOINTS

Strength and Efficiency of Riveted Joints 125

CHAPTER XIII

STRENGTH OF MATERIALS AS FOUND FROM THE RESULTS OF TESTS

Testing; Testing	Machines ;	Appl	iances	for	Measuring	E	lastic	
Deformations		10-13 10-13	10				53 • 33	131

CHAPTER XIV

THE LIMITS OF ELASTICITY

Limit of Pro	oportions	lity;	Yield F	oint;]	Illustra	tions of	the T	hree	
Limits ;	Unsymn	netrical	Loadin	g; Cha	inges of	Limit	by Prev	ious	
Loading		0.00	3.62				•	2.5	138

CHAPTER XV

THE MATERIALS USED IN CONSTRUCTION

Iron and Steel	: The I	Low-Carb	on Steels	; Medi	um Ste	els; H	igh-
Carbon or	Hard	Steels	; Steel	Castin	gs; C	last Ir	on :
Malleable	Cast In	on. Cop	per: Alle	oys of	Copper	. Vitre	eous
Materials :	Stone ;	Bricks ;	Cement,	Morta	ar, and	Concre	ete ;
Portland C	ement (loncrete,	Repeated	and]	Reversed	1 Stress	ses ;
Safe Stress	es Allo	wable in	Practice,	The	Micros	tructure	e of
Metals		• 1•	i i i i i i i i i i i i i i i i i i i	- 10 (grad) 10 (grad)	•		-

149

ix

PAGE