AN ELEMENTARY COURSE OF THEORETICAL AND APPLIED MECHANICS DESIGNED FOR THE USE OF SCHOOLS, COLLEGES, AND CANDIDATES FOR UNIVERSITY AND OTHER EXAMINATIONS

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649053551

An Elementary Course of Theoretical and Applied Mechanics Designed for the Use of Schools, Colleges, and Candidates for University and Other Examinations by Richard Wormell

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

RICHARD WORMELL

AN ELEMENTARY COURSE OF THEORETICAL AND APPLIED MECHANICS DESIGNED FOR THE USE OF SCHOOLS, COLLEGES, AND CANDIDATES FOR UNIVERSITY AND OTHER EXAMINATIONS

AN ELEMENTARY COURSE

OF

THEORETICAL AND APPLIED MECHANICS.

ELEMENTARY COURSE

THEORETICAL AND APPLIED

MECHANICS

DESIGNED FOR

THE USE OF SCHOOLS, COLLEGES,

AND

CANDIDATES FOR UNIVERSITY AND OTHER EXAMINATIONS.

BY

RICHARD WORMELL, M.A., B.Sc.,

Medallist in Mathematics and Natural Philosophy, Lond.

Second Edition.

LONDON:

GROOMBRIDGE AND SONS, 5, PATERNOSTER BOW.

MD.COOLXXI.

[The right of Translation is reserved.]

186. 9 50.

LONDON:

B. BARREIT AND SONS, PRINTERS,

MARK LANE.

8

PREFACE.

This Introduction to the Study of Theoretical and Applied Mechanics contains exact but simple demonstrations of all the propositions usually given in similar elementary treatises, with numerous experimental illustrations and practical applications. It is divided into sections, which are to a great extent independent. Each section is followed by a collection of examples, either original or taken from examination papers.

It is not necessary that all the chapters should be taken in order; students reading for the First Examination for B.Sc. of the London University may omit Chapter XII. in Statics, and sections 8 to 11, 16, 17, 23 to 30, 41 to 44, and 51 to 62 in Dynamics; but these parts are required for the Second Examination for B.A. and B.Sc.

The methods adopted in some parts of the work are different from those of other similar treatises; for instance, the fundamental propositions on the Centre of Gravity are based on the principle of limits; and in the propositions on Motion the relations between the variable elements have been expressed geometrically, so that the demonstrations in Dynamics, as well as in Statics, are geometrical rather than algebraical.

Although the work is specially adapted to the curriculum of the University of London, the author has endeavoured to make it a useful text-book for schools generally, and for students preparing for other examinations.

SECOND EDITION.

Tun Second Edition, besides being a thorough revise of the First, contains additions on the following subjects: Forces not in the same plane; the Mechanical Advantage of Compound Machines; Newton's Third Law of Motion; Energy and the Relation between Force and Energy.

April, 1871.

CONTENTS.

				100							
									P	AGE	
Introduction	***		101				***		***	1	
Force	94	***		*15		***		***	***	3	
STATIOS	386				West Co					4	
Magnitud	le of a for	rce							***	4	
Direction	of a fore	10	447				***		***	7	
Graphio	representa	tion	of for	COB				***	***	7	
	sibility of				***					7	
Resultan	t of forces	s in th	he sar	ne s	traig	ht li	ne	***	***	8	
Composition :	and resolu	ition	of for	1008			***		200	12	ı,
Forces in	the same	plan	e mee	eting	at e	poi	nt		***	12	
To demo	nstrate the	para	llelog	PILITE.	of fo	TOOB	for t	he di	rec-		
tion of	the resul	tant			***					15	
To prove	that the	e par	allelog	gran	a of	fore	e is	true	also		
	espect to t								•••	18	
Deductions fr	om the pa	rallel	ogran	LS CL	f for	088				23	
	of forces		·							23	
	of forces								***	27	
Parallelo	piped of f	orces								28	
Parallel forces	i					414		***		82	
Composit	tion of par	rallel	force	8	en es				***	33	
	ion of unl				200					85	
000000000000000000000000000000000000000	f parallel									87	
Momenta		****						***	***	40	
Reaction of su	rfaces		Deci						•••	47	
Centre of gra	vity					***				52	ď
	he C. G.	of the	e surf	808	of a	tria	gle			55	
	the same									56	
	he C. G.					dos y	place	a at	the		
	A, B, C					93.65				57	

CONTENTS.

177.0										
									P	AGB
To find the C	. G. o	f th	e peri	mete	er of	a tri	angle			57
To find the C	. G. c	fat	riang	ular	prisa	10:				58
To find the C	. G. o	fat	riang	ular	руга	mid		***	***	60
To find the C	. G. o	fat	yran	id w	rith s	poly	ygon	l ba	50	61
Properties of	the o	entr	e of g	ravi	ty		THE SECTION			62
To find geom	etrica.	lly ti	a C.	G. 0	fany	reti	lines	figu	re	65
To find the C								1466	0.990	66
The mechanical po	were	1					***			71
Machines										70-
The Lever			***		000		***		9997	73
Balances		Server				***		10000	14040	75
Weighing ma	chine		2300				***		***	80
Wheel and a	de	***		2322				***		82
Toothed who	els		-9401				***		20000	88
The pulley								444		89
Several move	ble p	alley	s with	h ser	xarate	o stri	ngs			91
The inclined			3.3	٠ آ						97
The wedge	***				****				***	99
The screw		***						444		100
Condition of	equili	bria	n who	en a	weig	ht is	supp	orted	l by	-
& screw	***						***		***	101
Compound m	achin	86						1222	***	104
Passive resistance	g				333					110
Friction				1941		2000			2000	110
Virtual velocities			***		***					116
The application of	trigo	nom	etry t	to th	e for	egoir	ig th	eorer	ne	120
Parallel force	s-C	ouple	8	***			3	****		123
The reactions	of st	urfac	es							124
Mechanical p	ower									127
DYNAMICS	222		***		***		***			131
Motion		200		1000				A CHOSE		131 .
Direction of	veloc	ity	***							133
Graphic repr			of m	otion	a.	474		144		134
Curve of vel			2000		1000				***	138
Given the cu			ocitie	n to	CODE	tract	the	curv	e of	
прасел										140
- C.										