GRAPHICAL STATICS: TWO TREATISES ON THE GRAPHICAL CALCULUS AND RECIPROCAL FIGURES IN GRAPHICAL STATICS

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649596546

Graphical Statics: Two Treatises on the Graphical Calculus and Reciprocal Figures in Graphical Statics by Luigi Cremona

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

LUIGI CREMONA

GRAPHICAL STATICS: TWO TREATISES ON THE GRAPHICAL CALCULUS AND RECIPROCAL FIGURES IN GRAPHICAL STATICS

ENGINEERING LIBRARY

GRAPHICAL STATICS

TWO TREATISES

ON THE

GRAPHICAL CALCULUS

AND

RECIPROCAL FIGURES IN GRAPHICAL STATICS

BY

LUIGI CREMONA

LLD. EDIN., FOR. MEMB. B.S. LOND., HON. F.E.S. EDIN.
HON. MEMB. CAMB. PHIL. BOC.
PROPESSOR OF MATHEMATICS IN THE UNIVERSITY OF HOME

TRANSLATED BY

THOMAS HUDSON BEARE

R.SC. LOND., ASSOC. M. INST. C.E., P.R.S. EDIN.
PROFESSOR OF ENGINEESING AND APPLIED MECHANICS, MERIOT-WATT COLLEGE, EDINBURGH

Orford

AT THE CLARENDON PRESS

1890

[All rights reserved]

TRANSLATOR'S PREFACE.

For some years I had used a rough English manuscript summary of Professor CREMONA'S works on the Graphical Calculus and Reciprocal Figures, while reading with engineering students of University College, London. As English versions were much wanted, I was advised by Professors Pearson and Kennedy to ask the consent of Professor CREMONA to my undertaking their translation, and at the same time they supported my application to the Delegates of the Clarendon Press that they should become the publishers. To both applications a most cordial consent was given; and I take the opportunity of thanking both the Author and the Delegates for the trust they have reposed in me. The translations have been revised by Professor Cremona and certain portions (in particular Chap. I. of Reciprocal Figures) have been entirely written by him for the present English edition. I regret that a long delay has occurred in the appearance of this book, due chiefly to pressure of work both on the part of myself and Professor Chemona.

I feel sure that the translation will supply a long-felt want, and be found extremely useful by students of engineering and the allied sciences, especially by those whose work compels them to pay attention to graphical methods of solving problems connected with bridges, roofs, and structures presenting similar conditions.

THE TRANSLATOR.

HERIOT-WATT COLLEGE, EDINBURGH.

VZ ₩.

3 20

> 福 ₩

CONTENTS.

		Page
TR	ANSLATOR'S PREFACE	Y
	ELEMENTS OF THE GRAPHICAL CALCULUS	i.
Λu	THOR'S PREPACE TO THE ENGLISH EDITION	xv
	CHAPTER I.	
	THE USE OF SIGNS IN GEOMETRY.	
Art.		
1.	Rectilinear segments, negative and positive sense	1
2.	Relation between the segments determined by 3 collinear	
	points	2
3.	Distance between 2 points	3
4.	Relation between the segments determined by n collinear	Office
(272)	pointa	3
5	Positive and negative direction of a straight line	3
	Relation between the segments determined by 4 points on a	
×.	straight line	4
7	Relation between the distances of any point from three con-	*
٠.		8277
20	current straight lines in its plane	4
	9. Angles, negative and positive sense	6
10.	Relation between the angles formed by 3 straight lines in a	
	plane	7
11.	Expression for the angle between two straight lines	8
12,	Areas, negative and positive sense	8
13-	14. Relation between the triangles determined by 4 points in	
	a plane	9
15.	Relation between 5 points in a plane, 4 of which form a	
U.S.C.	parallelogram	10
16	Relation between the distances of a point and 3 non-concur-	188
	rent straight lines in its plane	10
	tent straight times in 100 biggs	10

	۰	۰	۰	
17	τ	٦	٦	
v			ч	

CONTENTS.

Art.										Page
17. Circuits, simple and self-cutting, Modes						**	**	••	12	
5. T T						2.0	12			
24. Reduction of self-cutting to simple circuits								18		
	between two								••	20
	l relation of					of se	gmer	ats eq	lui-	
po	lent to a close	ed or o	open	circui	t	••	••	••	••	21
		OTT A	TORTO	D 77	·s.					
		CHA	PTE	K 11	*				£2:	
	61	RAPHIC	CAL A	DDIT	ION.					
	netrical sum o	of a se		of seg	ment	s giv	en i	n mag	gni-	
	le and sense		••	••			••	••		24
	of segments in							struci	tion	26
	s where the s		zero	••	¥.		••	••		27
	ical subtraction		••	2.8		••			**	28
	ection of segm									28
	rems for 2 sy									
th	e segments jo	ining	cach	syste	m to	the	samo	pole	are	
eq	nal			••		••		••		29
46-48. Exte	nsion of the v	word s	um t	o inel	nde :	bsol	ute 1	ositio	on	31
49-52. Con	structions for	compl	etely	deter	mini	ng tl	ne su	m	••	32
53. Case of	parallel segme	ents			99.500 99.500	•••	••	0.000		35
	2 parallel seg			30440	***		**	***	00000	35
		53750025								
		СНА	PTE	RII	E.					
	GRAP	HIÇAL	MUI	TIPLI	CATI	ON.				
55-56. Mul	tiplication of a	a strai	oht l	ine b	v a rs	tio				37
	of a straight						***	07.50	100	38
	of angles int				1000000			imed		39
	tiplication of									
	a constant ra							agur		39
	tiplication of									00
							24 8	- ·		40
	tios						1	••	***	42
	where these									45
co go Mm	tiplication of	a secon	cent	TYTE O.	MITTON	gows.	na of	ratio		49
	er construction	_			-					51

CHAPTER IV.					
POWERS.					
Art.					Pag
 Multiplication of a segment by the nth pow 	er of	a gi	ven 1	atio	54
74-75. Other constructions for same problem	••	***	••	**	55
CHAPTER V.					
VIIII 1111 11					
EXTRACTION OF ROOTS.					
76-77. Equiangular Spiral					59
78-82. Properties and construction of the spire	al			121	60
83-84. Application of it to the extraction of re					63
85. Extraction of square roots		••			64
86. The Logarithmic Curve and its properties					64
87. Construction of the Curve					66
88. Construction of tangents to the curve					67
89. Applications of the curve		••	••	••	68
CHAPTER VI.	ATTON	rs.			
90-91. Lill's construction of a complete polyno					70
92–93. Reduction of the degree of an equation		••	**	**	73
94. Equations of the second degree			10	••	75
CHAPTER VII.					
BEDUCTION OF PLANE FIGURE	RES.				
95-96. Reduction of a triangle to a given base				•••	77
97-100. Reduction of a quadrilateral,			**	***	78
101-103. Reduction of polygons	••			**	80
104-105. Reduction of sectors, and segments				**	82
106-107. Examples, figures bounded by o				and	
rectilinear segments	••		**	••	83
108-110. Reduction of curvilinear figures in					86
111. Application of the reduction of areas to	6 7.7327 - 22				
of a number of segments					87

CONTENTS.

ix