PRINCIPLES OF MECHANICS, AND THEIR APPLICATION TO PRIME MOVERS, NAVAL ARCHITECTURE, IRON BRIDGES, WATER SUPPLY, &C.; BEING AN ABSTRACT OF LECTURES

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649535545

Principles of Mechanics, and Their Application to Prime Movers, Naval Architecture, Iron Bridges, Water Supply, &c.; Being an Abstract of Lectures by W. J. Millar

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

W. J. MILLAR

PRINCIPLES OF MECHANICS, AND THEIR APPLICATION TO PRIME MOVERS, NAVAL ARCHITECTURE, IRON BRIDGES, WATER SUPPLY, &C.; BEING AN ABSTRACT OF LECTURES

Trieste

PRINCIPLES OF MECHANICS,

а ^с

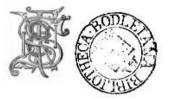
÷

AND THEIR APPLICATION TO

PRIME MOVERS, NAVAL ARCHITECTURE, IRON BRIDGES, WATER SUPPLY, &c.

THERMODYNAMICS, WITH SPECIAL REFERENCE TO THE STEAM ENGINE.

BEING AN ABSTRACT OF LECTURES


DELIVERED TO

THE CLASS OF CIVIL ENGINEERING AND MECHANICS IN THE UNIVERSITY OF GLASGOW, SESSION 1872-73.

BY

W. J. MILLAR, C.E.,

SECRETARY TO THE INSTITUTION OF ENGINEERS AND SHIPBUILDERS IN SCOTLAND.

LONDON: E. & F. N. SPON, 48, CHARING CROSS. NEW YORK: 446, BROOME STREET.

1874.

186. J. S3 ..

PREFACE.

As indicated on the title-page, the subjects treated of in this book constituted in a more extended form a series of Lectures delivered to the Class of Civil Engineering and Mechanics in the University of Glasgow during the latter part of session 1872–73.

Shortly after the death of Professor Rankine, the author was appointed to conduct the class referred to during the Professorial vacancy; and the various subjects treated of formed part of the complete course as entered in the syllabus of the class.

It having occurred to the author that a carefullyrevised abstract of these Lectures might be of use to students and others studying the various subjects treated of, the work as contained in the following pages is the result.

The subjects have been treated of as concisely as possible, numerical illustrations being occasionally given to assist the reader.

Various authorities have been consulted in the preparation of the present work; amongst others,

Professor Rankine's Works;

Moseley's Engineering and Architecture; Fairbairn's Mills and Millwork;

a 2

PREFACE.

Deschanel's Natural Philosophy, by Prof. Everett;
Shipbuilding in Iron and Steel (Reed);
Transactions Inst. Civil Engineers;
Transactions Inst. Engineers and Shipbuilders in Scotland;
Transactions Inst. Naval Architects;
Report (British Assoc.) Sea-going Qualities of Ships, 1869;
Annual of the Royal School of Naval Architecture and Marine Engineering;

and the various Engineering and Scientific periodicals, &c.

W. J. M.

GLASGOW, October, 1874.

50

iv

CONTENTS.

NAVAL ABORITEOTURE													
PRIME MOVERS 3 DTNAMOMETERS 3 MUSOULAR POWER 4 WATER POWER 4 WATER POWER 5 STORAGE OF WATER 5 WATER POWER 7 Vertical Water Wheels 7 Vertical Water Wheels 7 Relation of the Terms Impulse, Momentum, and Actual Energy 7 Undershot Wheels, in which the Water acts by Impulse 8 Undershot Wheels, in which the Water acts by Weight 11 Overshot Wheels, in which the Water acts by Weight 11 High Breast Wheels 12 Speed of Water Wheels 12 Speed of Water Wheels 13 Horizontal Water Wheels 15 WATER-FRESERE ENGINES 16 HYDRAULIO RAM 17 NAVAL ABORTEOTURE 18 Application to Shipe 22 Stability or Stiffness 24 Stability or Stiffness 24 Methods of finding the Motecentro 26													-
DYNAMOMITTERS 3 MUSOULAR POWER 3 WATER FOWER 5 STORAGE OF WATER 5 WATER FOWER 7 Vertical Water Wheels 7 Relation of the Terms Impulse, Momentum, and Actual Energy 7 Undershot Wheels, in which the Water acts by Impulse 8 Undershot Wheels, in which the Water acts by Weight 11 Overshot Wheels, in which the Water acts by Weight 11 High Breast Wheels 12 Speed of Water Wheels 12 Speed of Water Wheels 13 Horizontal Water Wheels 13 Horizontal Water Wheels 16 HYDRAULIO RAM 16 WINDMILLS 17 NAVAL ARCHITEOTURE 18 Application to Shipe 22 Stability or Stiffness 24 Stability 24 Mynamical Stability 24 Methods of finding the Metacentro 26	ENERGY				••			••	••	**			- 2
MUBOULAR FOWER 4 WATER FOWER 5 STORAGE OF WATER 5 WATER FOWER 7 STORAGE OF WATER 7 Vertical Water Wheels 7 Relation of the Terms Impulse, Momentum, and Actual Energy 7 Undershot Wheels, in which the Water acts by Impulse 8 Undershot Wheels, in which the Water acts by Weight 11 Overshot Wheels, in which the Water acts by Weight 11 High Breast Wheels 12 Speed of Water Wheels 12 Speed of Water Wheels 13 Horizontal Water Wheels 13 Horizontal Water Wheels 16 WATER-FRESSURE ENGINES 16 WINDMILLS 16 WINDMILLS 18 Application to Shipe 22 Stability or Stiffness 24 Stability or Stiffness 24 Muter Stability 24 Mynamical Stability 24 Stability of finding the Metacentro 26	PRIME MOVERS	++											3
WATEB FOWER 5 STORAGE OF WATEB 5 WATEB WHERDS 5 WATEB WHERDS 7 Vertical Water Wheels 7 Relation of the Terms Impulse, Momentum, and Actual Energy 7 Undershot Wheels, in which the Water acts by Impulse 8 Undershot Wheels, in which the Water acts by Meight 11 Overshot Wheels, in which the Water acts by Meight 11 High Breast Wheels 12 Speed of Water Wheels 12 Speed of Water Wheels 13 Horizontal Water Wheels 13 Horizontal Water Wheels 16 WYDAULJO RAM 16 WYDAULJO RAM 18 Equilibrium AND STABULTY OF FLOATING BODIES 18 Application to Shipe 22 Stability or Stiffness 24 Stability 24 Dynamical Stability 24 Methods of finding the Metacentro 26	DYNAMOMETERS			24	(30)		44		4.				3
STORAGE OF WATES 5 WATER WHERDS 7 Vertical Water Wheels 7 Relation of the Terms Impulse, Momentum, and Actual Energy 7 Undershot Wheels, in which the Water acts by Impulse 8 Undershot Wheels, in which the Water acts by Weight 11 Overshot Wheels, in which the Water acts by Weight 11 High Breast Wheels 12 Speed of Water Wheels 12 Speed of Water Wheels 13 Horizontal Water Wheels 13 Horizontal Water Wheels 16 WATER-FRESSURE ENGINES 16 WINDMILLS 17 NAVAL ABORITEOTORE 18 Application to Shipe 22 Stability or Stiffness 24 Stability 24 Murical Stability 24 Methods of finding the Motacentro 26	MUBOULAR POWER	368		••		••	÷.*						4
WATER WHERLS 7 Vertical Water Wheels 7 Relation of the Terms Impulse, Momentum, and Actual Energy 7 Undershot Wheels, in which the Water acts by Impulse 8 Undershot Wheels, in which the Water acts by Impulse 8 Undershot Wheels, in which the Water acts by Weight 11 Overshot Wheels, in which the Water acts principally by Weight 11 High Breast Wheels 12 Speed of Water Wheels 12 Speed of Water Wheels 13 Horizontal Water Wheels 13 Horizontal Water Wheels 16 WYDRAULJO RAM 16 WYDRAULJO RAM 18 Equilmentum and Stability 18 Application to Shipe 22 Stability or Stiffness 24 Stability 24 Dynamical Stability 24 Methods of finding the Motecentro 26	WATER POWER		ō.		-			-				•+	5
Vertical Water Wheels 7 Relation of the Terms Impulse, Momentum, and Actual Energy 7 Undershot Wheels, in which the Water acts by Impulse 8 Undershot Wheels, in which the Water acts by Weight 11 Overshot Wheels, in which the Water acts by Weight 11 High Breast Wheels 11 Efficiency of Water Wheels 12 Speed of Water Wheels 12 Speed of Water Wheels 13 Horizontal Water Wheels 13 Horizontal Water Wheels 16 WATER-FRESSURE ENGINES 16 WINDMILLS 17 Naval Ascentreroruez 18 Application to Shipe 22 Stability or Stiffness 24 Statical Stability 24 Methods of finding the Metacentro 26	STOBAGE OF WA	TRR	310		1.00								5
Vertical Water Wheels 7 Relation of the Terms Impulse, Momentum, and Actual Energy 7 Undershot Wheels, in which the Water acts by Impulse 8 Undershot Wheels, in which the Water acts by Weight 11 Overshot Wheels, in which the Water acts principally by Weight 11 Ithigh Breast Wheels 11 Overshot Wheels, in which the Water acts principally by Weight 11 High Breast Wheels 12 Speed of Water Wheels 12 Speed of Water Wheels 13 Horizontal Water Wheels 13 Horizontal Water Wheels 16 WATER-FRESSER ENGINES 16 HYDRAULIO RAM 17 NAVAL ABORITEOTURE 18 Application to Shipe 22 Stability or Stiffness 24 Statical Stability 24 Methods of finding the Motacentro 26	WATER WHERLS							200		**			7
Relation of the Terms Impulse, Momentum, and Actual Energy 7 Undershot Wheels, in which the Water acts by Impulse 8 Undershot Wheels, in which the Water acts by Weight 11 Overshot Wheels, in which the Water acts principally by Weight 11 High Breast Wheels 11 Efficiency of Water Wheels 12 Speed of Water Wheels 13 Horizontal Water Wheels 13 Horizontal Water Wheels 16 WATER-FRESSURE ENGINES 16 WINDMILLS 17 NAVAL AGENTRETURE 18 Application to Shipe 22 Stability or Stiffness 24 Statical Stability 24 Methods of finding the Metacentro 24 Stability 24 Stability 24 Stability 24 Stability 24	Vertical Water	whe	ela		1010								7
Undershot Wheels, in which the Water acts by Impulse	Relation of the	Tem	me T	mm	Lan. 1	form	antin	n. ar	A bu	etnal	Ene	rev	7
Undershot Wheels, in which the Water acts by Weight													
Overshot Wheels, in which the Weter acts principally by Weight 11 High Breast Wheels													
High Breast Wheels 11 Efficiency of Water Wheels 12 Speed of Water Wheels 12 Speed of Water Wheels 13 Horizontal Water Wheels 13 Horizontal Water Wheels 13 Horizontal Water Wheels 13 Horizontal Water Wheels 14 Beaction Wheel 15 WATER-FRESSER ENGINES 16 HYDRAULIO RAM 16 WINDMILLS 17 NAVAL ABGENTEOTURE 18 Application to Shipe 22 Stability or Stiffness 24 Statical Stability 24 Dynamical Stability 24 Methods of finding the Motacentro 26													
Efficiency of Water Wheels										-, -		- Day	1000
Speed of Water Wheels								1.000		15		348	1000
Horizontal Water Wheels, or Turbines													_
Reaction Wheel													
WATER-FREESURE ENGINES 16 HYDRAULIO RAM 16 WINDMILLS 17 NAVAL ABGRITEOTURE 17 NAVAL ABGRITEOTURE 18 EQUILIBRIUM AND STABILITY OF FLOATING BODIES 18 Application to Shipe 22 Stability or Stiffness 24 Statical Stability 24 Dynamical Stability 24 Methods of finding the Motecentre 26 Simpson's Rule for Areas 26			TABCI	10, 10		Dinc	ð., .	335					
HYDRAULIO RAM	1005	CO.U								••		200 C	100
WINDMILLS	The second of second of second		INBS		+1		44		**	••	**		
NAVAL ABORTEOTURE 18 EQUILIBRIUM AND STABILITY OF FLOATING BODIES 18 Application to Ships 22 Stability or Stiffness 24 Statical Stability 24 Dynamical Stability 24 Methods of finding the Motecentre 24 Simpson's Rule for Areas 26	HYDRAULIO RAM		41	22					**	35	100	3000	16
EQUILIBRIUM AND STABILITY OF FLOATING BODIES 18 Application to Shipe 22 Stability or Stiffness 24 Statical Stability 24 Dynamical Stability 24 Methods of finding the Metacentre 26 Simpson's Rule for Areas 26	WINDMILLS	100		**	1445			300		**			17
EQUILIBRIUM AND STABILITY OF FLOATING BODIES	NAVAL ABORITEOT	URE											18
Stability or Stiffness	EQUILIBRIUM AN	0 ST/	BILI	TT (DF F	LOAT	INO	Bon					18
Stability or Stiffness	Application to	Ship	8			193	-12	10167	1251	3			22
Statical Stability				22		44.5		200				0.00	24
Dynamical Stability													24
Methods of finding the Metacentre				- 52			- 52						24
Simpson's Rule for Areas													26
Contraction of the second s						12		0559		1.5			26
Bolling						6.61							27

CONTENTS.

											PAGE
WAVES											28
To Draw a Trochoic	1		22		S	- 22					30
Action of Waves on	. Sl	hip		3 9 00	300	- 88		••	- 22	••	31
Instruments for Mea	suri	ing B	lolI								32
Stream Lines								++			33
Resistance to the Mo	otion	ofa	Ve	ssel	12.						33
PROPULSION OF VESSE	LB										36
Reaction of Propelle	78										37
Paddle-wheel Prope	llers	i	$\mathbf{g}_{\mathbf{x}}$	1860		- 26	2000	1997	••		40
Screw Propellers											42
Hydraulic Propeller								34	**		43
Horizontal Propeller	18	••						••			43
CONSTRUCTION OF VES	SEL.S					- 55					44
STRENGTH OF STRUCTURE	88				14	12				**	51
STRAINS IN GIRDERS	2843		12	12.0	23		1993	**			51
Factors of Safety		40									61
Method of Frames				1				1			63
Method of Sections						346	566	35		1997	65
FORMS OF GIRDERS											66
Plate Girders			2								66
Lattice Girders						1	100				67
Bowstring Girders											68
Tubular Girders		÷.			10						69
Arch Bibs		84	- 22						**		70
Suspension Bridges											71
Continuous Girders		S. 1									78
COMPOUND BRAMS		24						22		1.1	75
PLATFORMS OF BRIDGS						38.0	-				76
DEFLECTION OF BRAME	2.92										-
STABILITY OF STRUCT	1000			12:23	<u>.</u>	17	**	200		**	78
Retaining Walls to								1	155	65	78
Retaining Walls to r									**	••	82
Towers and Chimne						- 33	••		**		82
STRENGTH OF SOLID C			••	••		••	••	**	••	••	1.1.1
Shafts and Axles		NIDIER:									85 85
STRENGTH OF HOLLOW	CT	LIND									87
Thin Shells, such as											87
Thick Hollow Cylin											87
STRENGTE OF SPRINGS									244		88
			**	100	1.1		0.200			1.4	00

•

vi

.

1

÷

CONTENTS.

THERMODYNAMICS												PAGE 90	
SOURCES OF HRAT		••										91	
TRANSMISSION OF	HEAT	1										92	
EXPANSION		••	а.			$\mathcal{G}^{(2)}$	3.6	34) -	24	332		94	
HEAT INDICATORS		••	ŵ.			(2, 2)	300		÷.	**	-	97	
LIQUEFACTION				**		97 D			a i	500		99	
SPECIFIC HEAT	sec.				1000	**)			a :	302	••	100	
COMBUSTION	an i				0.000							102	
STEAM BOILERS												106	
Belations between	en H	eat a	and	Mecl	anio	al E	norg	y				108	
STEAM ENGINES				11				••				110	
Indicated and N		al E	Lorse	-por	rer	81.3		**			••	112	
Indicator	**	••									.,	117	
COMPOUND ENGIN	68	••			**							118	
Condensers												120	
HOT-AIR ENGINES		÷+:	<u>.</u>			33 1	••		33 I	••		122	
GAS ENGINES	**	••				49	**		39	•+		122	
ELECTRO-MAGNETIC	Exan	-		œ	3983	39	22				æ.	123	
WATER SUPPLY		302		625								124	
FILTERS											••	125	
CLEAB-WATER TA												100	
Ричко												126	
FLOW OF WATER	THE	UGH	Рп	28	·							128	
SPECTRUM ANALYSIS				2		3			33			130	

vii

.

PRINCIPLES OF MECHANICS.

ENEBGY.

21

THE meaning of the term energy is capacity for performing work, or of overcoming resistance. This term has been further distinguished as follows:—

1. Potential energy, which means a capacity or ability to perform work in virtue of position.

Example.—A weight of 10 lbs. placed at a height of 10 feet above the ground, is said to have 10×10 foot pounds of potential energy.

2. Actual energy, or the capacity of performing work in virtue of motion against a resistance. This term applies to moving bodies, and is expressed by the symbol $\frac{Wv^3}{2g}$, where W represents the weight of the body in lbs., v the velocity of feet per second, and g equal to the force of gravity at the earth's surface; or generally, g = 32.2.

Example.—A body weighing 10 lbs. is moving with a velocity of 10 feet per second; then the actual energy of the body is $=\frac{10 \times 10^2}{2 \times 32 \cdot 2} = 15.5$ foot pounds. The symbol v^2

 $\frac{v^2}{2g}$ represents the height through which a body would fall to acquire the velocity v.

The general expression of the law of energy is, that

в