ALTERNATING CURRENT ENGINEERING PRACTICALLY TREATED

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649044511

Alternating Current Engineering Practically Treated by E. B. Raymond

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

E. B. RAYMOND

ALTERNATING CURRENT ENGINEERING PRACTICALLY TREATED

ALTERNATING CURRENT ENGINEERING

PRACTICALLY TREATED

E. MB. RAYMOND

TESTING DEPARTMENT GENERAL ELECTRIC COMPANY

WITH 102 ILLUSTRATIONS

SECOND EDITION, REVISED

NEW YORK
D. VAN NOSTRAND COMPANY
LONDON
KEGAN PAUL, TRENCH, TRÜBNER & CO., Ltd.
DRYDEN HOUSE, 43 GERRARD ST.

1905

COPYRIGHT, 1904,
BY
D. VAN NOSTRAND COMPANY

011 apo 62.5

1

THE directing for many years in practical engineering of graduates from technical colleges of this and other countries, and also young men starting in the electrical business without complete technical training, has impressed upon my mind the necessity for a general treatise on alternating current engineering presented in a practical and compact way, without complex methods of explanation, and free from any matters not bearing directly on purely engineering work. To this end this book has been written, covering, without the use of calculus, an outline of the subjects embraced by alternating current engineering. In order that a proper knowledge of the theory and operation of apparatus may be had, the first part of the book is devoted to elucidating the general laws of magnetism and alternating currents as applied to alternating work. The second part deals directly with modern alternating apparatus, covering in a general way the designing principles and the principles of operation, and in detail the methods of test that have been found to be the best.

E. B. RAYMOND.

SCHENECTADY, NEW YORK, AUGUST, 1904.

iii

\$R

CONTENTS.

PART I. The General Subject of Magnetism and Alternating Currents.

1

CHAPTER I.

																	PAGE
Magnetism .			4						83								I
Unit of Magne	tis	m				0		NO.	50	20		80		*0	*	*	I
Lines of Force		•	000					100	411	*00	*0	2.0	900	400	**		2
The Electroma	agn	et								+3	*0	•	*	*:	**	•	3
Production of	Flu	ıx			•			60	•	60	***	**	***	•33	*3	**	5
Permeability									•		•	¥3.5	**	*	90		7
Saturation .						•		21				40	10		*0	¥.	
Electromotive																	
Sine Curve .																	
Phase and Am																	13
Resistance .	•																18
Ohm's Law			i è		3	134	77.0		0.53	87		ÿ	20	26	į,		10
Increase of Re																	10
Self-Induction		i	1										-		30	58	20
Impedance .		66	86	66		0.00				-	10	077	935	000	20	- 50	
Power in Indu	ctiv	e i	Cir	ccu	its	-	1650					50	188	53	88	58	25
Wattmeter .																	
Rise and Fall	of	Cu	TT	ent	wi	th	Su	dde	nlı	, A	nn	lier	10	r V	Virl	h-	
drawn Co																	
Lenz's Law.																	
Time Constant																	
Electromagnet																	28
Hysteresis .			•		្		4	·.	٠	•						٠	29

VI					C	YT4:	LE	4.0	10.	0.15							
																	PAGE
Foucault Curr Capacity .	ent	S	•	•	•			•	٠	•		٠	٠	٠	٠	٠	30
Capacity .	•	٠	٠	•	•	٠	٠	•	٠	٠	٠	٠	٠	٠	٠		3 r
Capacity Indu	ıcta	nc	e		4					+							34
variations in	wa	ve	Sh	ape	e H	arı	non	nics	5 .	25.			200			26	36
Harmonics .	20	•	10	10	13	*3	20	22	*	20	20	(5.6	20	20	\sim		37
Form Factor	10	•3	23	63	*0	*0	•	30	*	20	*	×	*	35	×	100	40
Power Factor	ŧ.	•	•	ŧ	•	*	•	9	*	30	*	٠	×	\star	٠	•	43
					Св	IAP	TE	R I	α.								
Various Diagra																	46
Effect of Drop																	49
Polyphase Tra																	
with Diffe																	52
Three Phase 7	[ra	nsı	nis	sio	n		¥0	60		78	¥0	*		\mathbf{x}		92	58
Six Phase Tra	nsn	nis	sion	n	•		73	¥3	<u> </u>	23	10	20	ş:	(1) (€)	÷		64
Single Phase f	ron	ıT	hr	ee :	Ph:	ase	44			7	100	7	107	2		23	67
Splitting of Pl	has	e				•	1	35	÷								69
Splitting of Pl Surges in Tra	nsn	nis	sio	n (lire	cuit	s	*	•	•	ě	•	•	•	•	٠	71
PART	11.	ne.	Мо			Alta				Cus	rrei	ut s	4 p ₁	bar	ıtu	s.	
The Transform	ner	ee -			_					200	28	00	20	20	150		77
Testing Trans	for	me	TS.	(1) (i)	100	-	507	507	900	58	33	27	2/9	50	(3)	.5%	84
Design of Tra	nsf	orn	ner	ų.		1		-	<u>\$</u>)	20	88	88	*	33	8	-	103
The Constant	C	irra	ent	്ന	ra n	efo	rm	er.	50	55	•	58	510	(2)	Ť	8	
The Series Tra	ane	for	me	, **		310	****		100	*3	12	53	*	(2)	٨	•	100
The Compone	ana		ше	-	÷.		• .	511	100	*3	*11		7.0	•	•	•	
The Compens	110		•	٠		•	•	*8	83	•	•	*	*	•	•	•	112
					Сн	AP	rei	l	v.								
Various Trans	for	me:	r C	oni	nec	tio	ns a	and	l D	istr	ibu	ttic	n S	yst	em	ıs,	115
Distribution S	vete	*****						200			27.1		4200	10.11			124

Alternating Current Motors

Maximum Torque	vii
	PAGE
Maximum Horse-Power	153
[12] [2] 이 시작 선생님이 하다 (교리로보기가 하늘 일본보기자 이 14시] [2] [2] [2] [2] [2] [2] [2] [2] [2] [2	153
Calculation of Power Factor, Efficiency, etc	
Induction Motors on Single Phase Circuits	163
Testing of Induction Motors	170
The Repulsion Motor	178
The Alternating Current Generator	188
Consess V. Toules	
CHAPTER V. Testing.	
Testing Alternators	200
Saturation	201
Synchronous Reactance	
Rise of Temperature Under Non-Inductive Load, and	
Under Load of Power Factor Less than Unity .	
Core Losses	205
Load Losses	208
Efficiency at Various Loads and Power Factors	200
Regulation at Various Loads and Power Factors	210
Field Characteristic	210
Field Characteristic, Power Factor Less than Unity	211
Field Compounding at Unity and Lower Power Factors	211
Maximum Output at Various Power Factors	212
Insulation Resistance when Hot	
Alter Co. Attrib D. C. Co. C. T. A.C. b.	
Ability to Stand High Potential Strain on Insulation when	214
and the first of the same are a second of the second of	
Hot	
Hot	216
Hot	
Hot	217
Hot	217 217

· ·

t

j