PHYSICAL LABORATORY MANUAL FOR SECONDARY SCHOOLS AND COLLEGES

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649491483

Physical Laboratory Manual for Secondary Schools and Colleges by Charles F. Adams

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

CHARLES F. ADAMS

PHYSICAL LABORATORY MANUAL FOR SECONDARY SCHOOLS AND COLLEGES

Trieste

PHYSICAL

LABORATORY MANUAL

FOR SECONDARY SCHOOLS AND COLLEGES

BY

CHARLES F. ADAMS, A.M. TRACERR OF PHYSICS IN DETROIT CENTRAL HIGH SCHOOL

CHICAGO NEW YORK WERNER SCHOOL BOOK COMPANY

DEPARTMENT OF EDUCATION LELAND STANFORD JUNIOR UNIVERSITY

ř

ŵ:

COPYBIGHT, 1896, BT CHARLES F. ADAMS.

35

624616

C

PREFACE.

This manual is the outgrowth of several years of experience with pupils in the physical laboratory as well as of a study of the growth and development of laboratory work in secondary schools. The development of the work in my own hands has been attended with an elimination of qualitative exercises, or illustrative experiments, and a reduction of the number of exercises at first attempted. My experience and study lead me to believe that the best results are attained by comparatively few exercises, the greater part of them being quantitative in character. Quality of work, rather than quantity, should receive the most consideration. The tendency in my own work has been to strive after greater accuracy from year to year. To allow pupils to do quantitative exercises in a careless manner, with small regard for accuracy, is to do them an injury. Under these circumstances a quantitative exercise ceases to be such and becomes qualitative ; and, moreover, it is a pretense and a sham. The position here taken as to number and kind of exercises is, I believe, in accord with the best thought and practice of the time. In support of this it is necessary only to mention the report of the Physical Conference to "The Committee of Ten."

In the selection of experiments and methods of procedure great care has been taken to adopt only those that are capable of giving results of a considerable degree of accuracy in the hands of pupils. Regard has also been paid to those demanding inexpensive and

PHYSICAL LABORATORY MANUAL.

durable apparatus. Perhaps to some a few of the exercises may appear to be too difficult, but it is believed that they should be such as to demand the very best thought and endeavor the pupils are capable of giving, while at the same time not being beyond their capacity.

In the presentation of the subject matter, it has been my aim to make the instructions so clear and explicit that the pupil need not go wrong, and to select that order of procedure that will give the best results. Here again accuracy has been one of the chief considerations. It has also been my endeavor to develop in the pupils the power of independent thinking, and to that end to withhold from them that which they ought to be able to think out for themselves. Very often too much help is given to the pupil in the laboratory rather than too little.

It is with pleasure that I acknowledge my indebtedness to the excellent manuals and text-books in common use, and to the many teachers and instructors in physical science from whom I have received valuable suggestions while preparing this work. I wish also to acknowledge my obligation to Prof. John O. Reed, of the University of Michigan, for valuable hints.

C. F. ADAMS.

DETROIT, MICH., October, 1896.

CONTENTS

INTRODUCTION . .

12

82

Page

.

I

CHAPTER I

(a) (b) (C)(a)(a) (a)

SIMPLE MEASUREMENTS

Exercise		-							
L	The Diagonal Scale	13	1			23		53	25
II.	The Vernier		 		24.2				27
ш.	The Micrometer Screw							1.	29
IV.	The Jolly Balance	63	 		*	20	10		81
v.	Density of a Rectangular Prism		٠.						33
VI.	Density of a Cylinder	•	-	(\mathbf{x})		93		23.	34
VII.	Density of a Sphere							1	35
VI.	Density of a Cylinder	e,		÷	•	83		33	1

CHAPTER II

MECHANICS OF SOLIDS

VIII.	Elasticity of Bending : Length Constant		30	- 20	84	36
IX.	Elasticity of Bending: Length Variable	946	.	2.2		88
x.	Composition of Concurring Forces	4		- 22		38
Xİ.	Composition of Parallel Forces	\mathbf{H}		÷	5.8	40
XII.	Center of Gravity	4		4	4	43
XIII.	Uniformly Accelerated Motion					44
XIŶ.	The Pendulum : The Law of Length .			+	 	47
XV.	The Pendulum : Length of Arc	2	28	- 23		50
XVI.	The Inclined Plane			•	 	51

CHAPTER III

MECHANICS OF FLUIDS

XVII.	Downward Pressure in Liquids						43			55
XVIII.	Lateral Pressure in Liquids .									57
XIX.	Upward Pressure in Liquids .	•	12	•	•	•	•	•	•	57

PHYSICAL LABORATORY MANUAL

Exercise		Page
XX.	Reading the Barometer	58
XXL	Compressibility of Gases : Boyle's Law	60
XXLL.	Density of Water	63
XXIII.	Buoyant Force: The Principle of Archimedes .	65
XXIV.	Specific Gravity of Solids Denser than Water	66
XXV.	Specific Gravity of Solids less Dense than Water	67
XXVI.	Specific Gravity of Liquids by weighing a Solid in	
	them	69
XXVII.	Specific Gravity of Liquids by Means of a Bottle	70
XXVIII.		
	Balanced Columns	71

CHAPTER IV

HEAT

XXIX.	Testing a Mercury Thermometer	÷.)	8 9	.	73
XXX.	Coefficient of Linear Expansion .				75
	Expansion of Air under Constant				78
XXXII.	Specific Heat of a Solid : Copper	 20		÷.	80
	Latent Heat of Melting				82
XXXIV.	Latent Heat of Vaporization		 14	14	84

CHAPTER V

MAGNETISM AND ELECTRICITY

XXXV.	First Law of Magnets	
XXXVL	Effect of breaking a Magnet	
XXXVII.	Mapping a Magnetic Field	
XXXVIII.	Mapping a Magnetic Field by Iron Filings 89	
XXXIX.	The Simple Voltaic Cell 90	
XL.	Electromagnets	
XLL.	Electromagnets	
XLII.	An Electromotive Series 96	
	The Tangent Galvanometer 96	
XLIII.	Reduction Factor of a Tangent Galvanometer :	
	By a Gas Voltameter 100	
XLIV.	Reduction Factor of a Tangent Galvanometer:	
	A, By a Copper Voltameter 103	
	B. By a Silver Voltameter 104	
XLV.	A Polarization Curve 106	
XLVI.	Joining Cells	
	그 방법 방법 이 가지가 있는 것은 것은 것을 가지 않는 것은 것은 것이 가지 않았다. 같은 것은 것들것	

6

e 13

CONTENTS

 Exercise
 Page

 XLVII.
 Ohm's Law
 108

 XLVII.
 Resistance of Wires by Wheatstone Sliding Bridge
 111

 XLIX.
 Measurement of Electromotive Force
 114

 L.
 Resistance of a Cell: Mance's Method
 116

 LI.
 Resistance and Electromotive Force of a Cell
 117

. .

CHAPTER VI

SOUND

LII.	Scale Ratios	Ľ
LIII.	Vibrations of Strings: Law of Length 121	
LIV.	Vibration of Strings: Law of Diameter 123	ĺ.
LV.	Vibration of Strings: Law of Tension 124	ł
LVI.	Vibration Rate of a Tuning-Fork	i
LVII.	Velocity of Sound	í
LVIII.	Velocity of Sound in Brass : Kundt's Method 129	Ê

CHAPTER VII

LIGHT

LLL	Photometry							132
LX.	To measure the Candle-Power of							134
LXI.	Law of Reflection of Light							134
LXII.	Position of an Image in a Plane	M	irror		÷.	÷.	2	136
LXIII,	Focal Length of a Concave Mirr	or	$\sim \infty$		•			136
LXIV.	Focal Length of a Convex Lens:	6	un en					
337	A. By Direct Sunlight	\sim	$\sim c$	÷.		100	*	138
	B. By a Distant Object							139
LXV.	Focal Length of a Convex Lens:	B	y Paz	alls	x			139
LXVI.	Focal Length of a Convex Lens:	B	y a T	ele	800	pe		140
LXVII.	Focal Length of a Convex Le	ns ;	By	Co	nju	iga	te	
- W	Foci	30	18 19			2	100	141
LXVIII.	Conjugate Foci				2			142
LXIX.	Images formed by a Convex Ler					4		144
LXX.	Index of Refraction of Water .							145
LXXI.	Angle of a Prism		2.2				13	147
LXXII.	Index of Refraction of Glass .		8.9	8	3	3	•	148
TANGENT	AND SINE OF AN ANGLE					×.		152
APPENDIX	AND SINE OF AN ANGLE	1	2.1			51	8	153
								168