THE ABSORPTION SPECTRA OF SOLUTIONS AS STUDIED BY MEANS OF THE RADIOMICROMETER; THE CONDUCTIVITIES, DISSOCIATIONS, AND VISCOSITIES OF SOLUTIONS OF ELECTROLYTES IN AQUEOUS, NON-AQUEOUS, AND MIXED SOLVENTS Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649034475

The Absorption Spectra of Solutions as Studied by Means of the Radiomicrometer; The Conductivities, Dissociations, and Viscosities of Solutions of Electrolytes in Aqueous, Non-Aqueous, and Mixed Solvents by Harry C. Jones

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

HARRY C. JONES

THE ABSORPTION SPECTRA OF SOLUTIONS AS STUDIED BY MEANS OF THE RADIOMICROMETER; THE CONDUCTIVITIES, DISSOCIATIONS, AND VISCOSITIES OF SOLUTIONS OF ELECTROLYTES IN AQUEOUS, NON-AQUEOUS, AND MIXED SOLVENTS

i

ŝ

t

Chem 3809.15

THE ABSORPTION SPECTRA OF SOLUTIONS AS STUDIED BY MEANS OF THE RADIOMICROMETER

THE CONDUCTIVITIES, DISSOCIATIONS, AND VISCOS-ITIES OF SOLUTIONS OF ELECTROLYTES IN AQUEOUS, NON-AQUEOUS, AND MIXED SOLVENTS

BY

HARRY C. JONES AND COLLABORATORS

WASHINGTON, D. C. Published by the Carnegle Institution of Washington 1915

Chem 3809.25 Sice, Et. total

1

,92

4

. . . JUN 7 1915

CARNEGIE INSTITUTION OF WASHINGTON PUBLICATION No. 210

1:)

PRESS OF GIBSON BROTHERS WASHINGTON, D. C.

PREFACE.

The work recorded in this monograph, while apparently dealing with several subjects, is in fact closely connected, in that it all bears directly or indirectly on the present solvate theory of solution, which was proposed in the Johns Hopkins laboratory about fifteen years ago.

The work on the absorption spectra of solutions by Dr. Shaeffer and Mr. Paulus, using the radiomicrometer, led to results of the same general character as those obtained earlier by Dr. Guy and recorded in publication No. 190 of the Carnegie Institution of Washington. Solutions of some non-hydrated salts are about equally transparent with pure water, except at the bottoms of the absorption bands, where the solutions are more opaque. Solutions of hydrated salts are in general more transparent than pure water. All things considered, we regard this as the strongest evidence thus far obtained in favor of the solvate theory of solution.

The work of Dr. Smith, on the conductivity and dissociation of certain organic acids in water, is a continuation of that which has already appeared in publication No. 170 of the Carnegie Institution of Washington. The investigation by Dr. Wightman and Mr. Wiesel, on the conductivity of organic acids in alcohol, is a continuation of the work which has been in progress in this laboratory for more than ten years on the conductivity and dissociation of electrolytes in water as a solvent. (See publication No. 170 of the Carnegie Institution of Washington.) While this investigation is only preliminary, results of interest have already been obtained.

Dr. Wightman, Dr. Davis, and Mr. Holmes made a very exhaustive study of two simple salts in mixtures of alcohol and water, solutions in mixtures of these solvents showing abnormal properties.

The work by Dr. Davis and Dr. Hughes, on the properties of solutions in acctone, was taken up because of the abnormal behavior of acctone as a solvent.

The investigation by Dr. Davis and Mr. Putnam, of ternary mixtures of glycerol, acetone, and water, had in mind the fact that glycerol has a very high viscosity, water intermediate viscosity, and acetone a very low viscosity. The viscosities and conductivities of solutions in ternary mixtures of these solvents were studied. A general discussion of the results obtained, bearing on the solvate theory of solution, seemed desirable. The work as completed was published in a large PREFACE.

number of papers, and in a fairly large number of journals in America, Germany, England, and Switzerland. A general discussion of the results thus far obtained would render reference to the work more convenient. The last chapter of this monograph gives in concise form such a discussion and summary. A bibliography of the papers and monographs already published, bearing upon this theory, will make reference to the literature simpler.

Finally, it gives me great pleasure to thank the Carnegie Institution of Washington for the generous aid with which they have supported these investigations, and without which it would have been impossible to do much of this work.

HARBY C. JONMS.

4

CONTENTS.

CHAPTER I.

THE ABSORPTION SPECTRA OF AQUEOUS SOLUTIONS OF HYDRATED AND NON-HYDRATED SALVE, AS STUDIED BY MEANS OF THE RADIOMOUSHIPPER.

he Radiomicrometer
dethod of Procedure
he Cells.
larlier Results.
ffeet of Slit-Width
Vater Absorption
fect of Slit-Width on the Absorption of Light by Water
beorption of Light by Water as Affected by Hydrated and by Non-hydrated Salts.
Asthod of Procedure
tenulta
Necuesion of the Results

CHAPTER II.

CONDUCTIVITIES, TEMPERATURE COEFFICIENTS OF CONDUCTIVITY, DIRSOCIATIONS, AND CONSTANTS OF CRETAIN ORGANIC ACIDS IN AQUROUS SOLUTIONS.

troduction.
rpose of the Investigation
perimental
ngenta
peratus
ocedure
Cell Constants.
Values
Limiting Conductivities of the Acids
Malic scid.
Aconitic acid
m-Chlorobensoic acid.
p-Chlorobensoie acid
o-Bromobensoie acid
m-Acetoxybenacic acid
o-Sulphobensoic acid
m-Sulphobensoic acid
p-Aminobensensulphonic acid
Sebasie acid
Dissociation Constants.
ninery

CHAPTER III.

A PRELIMINARY STUDY OF THE CONDUCTIVITY OF CRETAIN ORGANIC ACIDS IN ETHTL ALCOBOL OF 15°, 25°, AND 35°.

torical					
erimental					
ults					
Malonie scid					
o-Chlorobensoic acid					
p-Chlorobensoic acid					
p-Bromobensoic scid	100	222	52		
o-Nitrobensolc acid					
p-Nitrobensoie acid					
1 0 4 Deriver Legende and a		• • •	**	• •	•••
1, 2, 4, Dinitrobensoie acid		•••	••	••	
1, 2, 4, Dihydroxybensoie acid		• • •	• •	••	••
Tetrachlorphthalic acid				• •	
Malonic, and Change in Concentration				••	
o-Chlorobensoic and Change in Concentration				••	
p-Chlorobensoic and Change in Concentration.			- 41		
p-Bromobensoic and Change in Concentration					
· · · · · · · · · · · · · · · · · · ·	0.000		2020		1
					5

STUDY OF ABSORPTION SPECTRA.

Results—Continued. o-Nitrobensoie and Change in Concentration	Page 76 76 76 76 76 77
CHAPTER IV.	
THE CONDUCTIVITY AND VISCOBITY OF SOLUTIONS OF POTASSIUM IODIDE AND SODIUM IODIDE IN MIXTURES OF ETHYL ALCOHOL AND WATER.	
Experimental Pure Anhydrous Alcohol Specific-Gravity Detarminations Mixed Solvents Dissolved Salts Pipettes Conductivity Cells Temperature Regulators Corrections for Expansion and Contraction Viscosities Viscosities Viscosity and Fluidity of Potassium Iodide in Alcohol-Water Mixtures Temperature Coefficients of Fluidity of Potassium Iodide Viscosity and Fluidity of Potassium Iodide in Alcohol-Water Mixtures Conductivity of Sodium Iodide in Alcohol-Water Mixtures Conductivity of Sodium Iodide in Mixtures of Ethyl Alcohol and Water Conductivity of Sodium Iodide in Mixtures of Ethyl Alcohol and Water Viscosity and Fluidity Viscosity and Fluidity Viscosity and Fluidity Viscosity and Fluidity Viscosity and Fluidity Conductivity Summary	90 90 90 81 82 82 82 83 84 85 85 85 87 88 88 99 90 80 90 80 80 80 81 82 82 82 82 82 82 82 82 82 82 82 82 82
Conclusions	96
CHAPTER V.	
CONDUCTIVITY AND VISCOSITY OF SOLUTIONS OF RUBDIUM SALTS IN MIXTURES OF ACETONS AND WATER.	
Experimental. Ounductivity Apparatus Bridge. Calls Contact Temperature Baths Temperature Regulation. Viscosity Apparatus Bolvents. Water. Acetone Mintures of Acetone and Water. Solutions.	98 98 99 99 99 99 99 99 100 101 101 101 102 102 102 102
Temperature Coefficients Molecular Conductivity of Rubidium Chloride	102 103 104 104 105 106 107 108 109 110 111 111 111

6

CONTENTS.

CHAPTER VI.

THE CONDUCTIVITY AND VISCOUTT OF CERTAIN RUBIDIUM AND AMMONIUM SALTS IN TRENARY MIXTURES OF GLYCEBOL, ACETONE, AND WATER AT 15°, 25°, AND 35°.

CHAPTER VII.

DESCUSSION OF EVIDENCE ON THE SOLVATE THEORY OF SOLUTION OBTAINED IN THE LABORATORIDE OF THE JOHNS HOFKINS UNIVERSITY.

Earlier Work.	141
Relation between Lowering of the Freezing-point of Water and Water of Crystalli-	
sation of the Dissolved Substance. Approximate Composition of the Hydrates formed by Various Substances in Solution	143
Approximate Composition of the Hydrates formed by Various Substances in Solution	145
Relation between the Minima in the Freezing-point Curves and the Minima in the	
Boiling-point Curves	147
Boiling-point Curves. Relation between Water of Crystallisation and Temperature of Crystallization	148
Hydrate Theory in Aqueous Solutions becomes the Solvate Theory in Solutions in	
General	149
General	151
Relation between the Hydration of the Ions and Their Ionic Volumes	155
Hydration of the Ions and the Velocities with which They Move	157
Dissociation as Measured by the Freezing-point Method and by the Conductivity	
Method. Effect of one Salt with Hydrating Power on the Hydrates formed by a Second Salt	158
Effect of one Salt with Hydrating Power on the Hydrates formed by a Second Salt	
in the Same Solution	161
Investigations in Mixed Solvents	162
Spectroscopic Evidence Bearing on the Solvate Theory of Solution	170
Work of Jones and Uhler	170
Work of Jones and Anderson	172
Work of Jones and Strong	175
Absorption Spectra of Neodymium Salts	178
g Bands	180
Effect of Rise in Temperature	181
Spectrophotography of Chemical Reactions	183
Work of Jones and Guy on the Absorption Spectra of Solutions	185
Work of Jones, Shaeffer, and Paulus. Summary of the Lines of Evidence obtained in this Laboratory bearing on the	188
Summary of the Lines of Evidence obtained in this Laboratory bearing on the	
Solvate Theory of Solution. How the present Solvate Theory of Solution differs from the older Hydrate Theory	189
How the present Solvate Theory of Solution differs from the older Hydrate Theory	190
Significance of the Solvate Theory of Solution.	192
The Solvate Theory and the Theory of Electrolytic Dissociation	193
Does the Solvate Theory help to explain any of the Apparent Exceptions to the	
Theory of Electrolytic Dissociation?	194
Does the Solvate Theory aid us in Explaining the Facts of Chemistry in General	
and Physical Chemistry in Particular?	196
Why is the Nature of Solutions of such Vital Importance not only for Chemistry	105
but for Science in General?	197
Bibliography	199
Papers	199 202
Monographs	202

7