A TREATISE ON THE THEORY OF INVARIANTS

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649177455

A treatise on the theory of invariants by Oliver E. Glenn

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

OLIVER E. GLENN

A TREATISE ON THE THEORY OF INVARIANTS

Trieste

A TREATISE ON THE THEORY OF INVARIANTS

 $\mathbf{B}\mathbf{Y}$

OLIVER E. GLENN, PH.D. PROFESSOR OF MATHEMATICS IN THE UNIVERSITY OF PENNSYLVANIA

UNIVERSITY OF TORONTO

GINN AND COMPANY BOSTON · NEW YORK · CHICAGO · LONDON ATLANTA · DALLAS · COLUMBES · SAN FRANCISCO

0A 201 G5 1915

COPYRIGHT, 1915, BY OLIVER E. GLENN ALL RIGHTS RESERVED 215.9

Che Athennum Bress GINN AND COMPANY · PRO-PRIETORS · DOSTON · U.S.A.

PREFACE

The object of this book is, first, to present in a volume of medium size the fundamental principles and processes and a few of the multitudinous applications of invariant theory, with emphasis upon both the nonsymbolical and the symbolical method. Secondly, opportunity has been taken to emphasize a logical development of this theory as a whole, and to amalgamate methods of English mathematicians of the latter part of the nineteenth century — Boole, Cayley, Sylvester, and their contemporaries — and methods of the continental school, associated with the names of Aronhold, Clebsch, Gordan, and Hermite.

The original memoirs on the subject, comprising an exceedingly large and classical division of pure mathematics, have been consulted extensively. I have deemed it expedient, however, to give only a few references in the text. The student in the subject is fortunate in having at his command two large and meritorious bibliographical reports which give historical references with much greater completeness than would be possible in footnotes in a book. These are the article "Invariantentheorie" in the "Enzyklopädie der mathematischen Wissenschaften" (I B 2), and W. Fr. Meyer's "Bericht über den gegenwärtigen Stand der Invariantentheorie" in the "Jahresbericht der deutschen Mathematiker-Vereinigung" for 1890–1891.

The first draft of the manuscript of the book was in the form of notes for a course of lectures on the theory of invariants, which I have given for several years in the Graduate School of the University of Pennsylvania.

The book contains several constructive simplifications of standard proofs and, in connection with invariants of finite

THE THEORY OF INVARIANTS

groups of transformations and the algebraical theory of ternariants, formulations of fundamental algorithms which may, it is hoped, be of aid to investigators.

While writing I have had at hand and have frequently consulted the following texts:

CLEBSCH, Theorie der binären Formen (1872).

CLEBSCH, LINDEMANN, Vorlesungen über Geometrie (1875).

DICKSON, Algebraic Invariants (1914).

DICKSON, Madison Colloquium Lectures on Mathematics (1913). I. Invariants and the Theory of Numbers.

ELLIOTT, Algebra of Quantics (1895).

FAX DI BRUNO, Théorie des formes binaires (1876).

GORDAN, Vorlesungen über Invariantentheorie (1887).

GRACE and YOUNG, Algebra of Invariants (1903).

W. FR. MEYER, Allgemeine Formen und Invariantentheorie (1909).

W. FR. MEYER, Apolarität und rationale Curven (1883).

SALMON, Lessons Introductory to Modern Higher Algebra (1859; 4th ed., 1885).

STUDY, Methoden zur Theorie der ternären Formen (1889).

O. E. GLENN

PHILADELPHIA, PA.

CONTENTS

CHAPTER I. THE PRINCIPLES OF INVARIANT THEORY

SECTION 1. THE NATURE OF AN INVARIANT. ILLUSTRATIONS

										PAGE
I.	An invariant area .	10	•2	343	34	\bar{r}	¥3	1		1
II.	An invariant ratio .		÷2		24		10	28	1	2
III.	An invariant discrimina	int	**				30			4
IV.	An invariant geometric	rela	tion							5
v.	An invariant polynomia	d		12	0 4		- 6	2		6
VI.	An invariant of three li		2	4			1			8
VII.	A differential invariant		12	×	23	-	90			9
VIII.	An arithmetical invaria	nt	80	30	3 9	100			\mathbf{G}	12
SECTI	ON 2. TERMINOLOGY A TIONS	ND]	Defi	NITI	IONS.	TR	ANSF	ORM	A•	
I.	An invariant		ĸ	×	-	(a):	X:		-	14
п.	Quantics or forms .			*			•			14
III.	Linear transformations		en:			• ::	•	:+:	1.4	15
IV.	A theorem on the trans	form	ned pe	olyn	omial	-	1			16
v.	A group of transformati					2	4		1	18
VI.		•	¥1)	1	58	240	42	+	34	19
VII.	Cogrediency		*0	÷	200		40	- 20		20
VIII.	Theorem on the roots of	ap	olyne	mia	1.					21
IX.,	Fundamental postulate			1			- 25	1	14	22
X.		÷.	÷.	2	9		1		24	22
XI.	Analytical definition		45	÷	28		λX	÷	÷.	23
		9	1 0	æ	1.1	1.00	к	×	28	25
SECTI	on 3. Special Inva	RIAN	sт F	ORM	LATIO	XS				
L.			•					*	39	27
п.	Hessians		•	10			73	\approx	525	28
III.	Binary resultants .		2.1					121	12	29
			Card In							

THE THEORY OF INVARIANTS

	Discriminant of a bir	ary f	form	321	2.5			100	1.00	31
v.	Universal covariants			1980	12	÷			×	32
	CHAPTER II. 1	ROF	ERTI	ES (OF I	NVA	RIA	NTS		
SECT	ION 1. HOMOGENEI	TY C	FA	BINA	RY (loxe	OMIT	ANT		
1.	Theorem on homoger	neity			• •					33
SPOT	ION 2. INDEX, ORI	TEP	Drap	FF 1	VER	HT				
	and the second second second second	0.0000		s-entering						
1.	STREET CONTRACTOR		÷.		43			•	+	35
II.	a areas out out one and				•	*	÷.	•0		35
111.	Theorem on weight .	*	•	0.63	•			•		36
SECT	ION 3. SIMULTANE	ous	Coxco	MIT.	ANTS					
I.	Theorem on index an	nd we	ight).)					ų.	38
SECT	ion 4. Symmetry.]	FUNI	AMEN	TAL	Exis	TEN	E TI	HEOR	EM	39
	PTER III. THE P 10n 1. Invariant				' IN	VAR	IAN	тт	HEC	ORY
SECT	ion 1. Invariant	Ope	BATOI	88					HEC	
Sect I.	ion 1. Invariant Polars	Ope	RATOI	88						42
SECT I. II.	ION 1. INVARIANT Polars Polar of a product .	Оре	ватоі	38		;	• •			
SECT I. II. III.	ION 1. INVARIANT Polars Polar of a product . Aronhold's polars .	Оре	ватоі	38		;	• •			42 45
SECT I. II. III. IV.	ION 1. INVARIANT Polars Polar of a product . Aronhold's polars . Modular polars .	Оре	ватоі : :	кв						42 45 46
SECT I. II. IV. V.	ION 1. INVARIANT Polars Polar of a product . Aronhold's polars .	Ope	RATOI	ts	ital p		ate			42 45 46 48
SECT I. II. III. IV. V. VI.	ION 1. INVARIANT Polars Polar of a product . Aronhold's polars . Modular polars . Operators derived fro	Ope	BATOI	rs lamen	ital p		ate			42 45 46 48 49
SECT I. II. IV. V. VI. SECT	ION 1. INVARIANT Polars . Polar of a product . Aronhold's polars . Modular polars . Operators derived fro . Transvection . ION 2. THE ARO:	Ope	RATOI e fund D SY	RS lamen	ital p		ate			42 45 46 48 49
SECT I. III. IV. V. VI. SECT I.	10N 1. INVARIANT Polars Polar of a product . Aronhold's polars . Modular polars . Operators derived fro Transvection 10N 2. THE ARO: PROOF Symbolical represent Symbolical polars .	Ope	EATOI e fund D Sy	ts lamen	ital po LISM.		ate SYMB	olic.		42 45 46 48 49 51
SECT I. III. IV. V. VI. SECT I.	10N 1. INVARIANT Polars Polar of a product . Aronhold's polars . Modular polars . Operators derived fro Transvection 10N 2. THE ARO: PROOF Symbolical represent Symbolical polars .	Ope	EATOI e fund D Sy	ts lamen	ital po LISM.	stul	ate YMB			42 45 46 48 49 51 51 53 53
SECT I. III. IV. V. VI. SECT I. II.	10N 1. INVARIANT Polars Polar of a product . Aronhold's polars . Modular polars . Operators derived fro Transvection 10N 2. THE ARO: PROOF Symbolical represent: Symbolical polars . Symbolical transvector	OPE	e fund	RS lamen	ital po LISM.		ate YMB	olic.		42 45 46 48 49 51 51 53 55 55 56
SECT I. II. III. IV. V. VI. SECT I. II. III.	10N 1. INVARIANT Polars Polar of a product . Aronhold's polars . Modular polars . Operators derived fro Transvection 10N 2. THE ARON PROOF Symbolical represent Symbolical polars . Symbolical transvector Standard method of .	OPE	e fund	RS lamen	ital po LISM.		ate SYMB			42 45 46 48 49 51 51 53 55 55 56
SECT I. III. IV. V. VI. SECT I. II. III. IV.	10N 1. INVARIANT Polars Polar of a product . Aronhold's polars . Modular polars . Operators derived fro Transvection 10N 2. THE ARON PROOF Symbolical represent Symbolical polars . Symbolical transvect Standard method of Formula for the rth t	Ope	e fund	RS lamen	ital po LISM.	s s s s	ate SYMB			42 45 46 48 49 51 51 53 55 56 56 57
SECT I. III. IV. V. VI. SECT I. II. III. IV. V.	10N 1. INVARIANT Polars Polar of a product . Aronhold's polars . Modular polars . Operators derived fro Transvection 10N 2. THE ARON PROOF Symbolical represent Symbolical polars . Symbolical transvector Standard method of . Formula for the rth . Special cases of operations .	OPE 	e fund 	R8	ital p LISM.	s S	ate SYMB			42 45 46 48 49 51 51 53 55 56 57 59

vi

CONTENTS

SEC	rion 3. Reducibility. I Systems	CLEN	IEN	TARY	IR	REDU	CIBI	LE	
L	Illustrations								P
n.						•0.	*		
ш.	Concomitants of binary cubic.				:	•	3 *	3	
SEC:	TION 4. CONCOMITANTS IN	TER	ms	OF T	HE	Root	5		
I.	Theorem on linear factors	1277	14	24	31	11		32	
II.	Conversion operators .		42	24	-		4		
ш.	Principal theorem			- SK			-		
IV.	Hermite's reciprocity theorem		*		8	÷.	*		
SEC	TION 5. GEOMETRICAL INTE	RPRI	ETA	rions	. I	VOLU	JTIC	N	
I.	Involution			G					
IL								- 52	
І. П.		į.	:	ġ	:	2	÷	į,	
SEC	TION 2. THEOREMS ON TRA	NSV	FOT	ANTS					
T	Monomial concomitant a term				ant				
	Theorem on the difference b								
	vectant								
ш.	Difference between a transvect	tant	and	one o	f its	terms	ŝ.		
SEC:	TION 3. REDUCTION OF TR.	ANSI	VECT	TANT	Sys	TEMS			
I.	Reducible transvectants of a sp	pecia	d ty	ре	120		÷.	12	
	'Fundamental systems of cubic							1	
	Reducible transvectants in ger							28	
	TION 4. SYZYGIES				8				
I.	Reducibility of $((f, g), h)$ Product of two Jacobians	•				*9	×	×	
п.	Product of two Jacobians .	•			•				
III.									
	Syzygies for the cubic and qua	ritio	town	-				1	
IV,	of a Bres for the cupic and dua	IS UNC.	roun	10.1		•	187		

vii