PHYSICO-CHEMICAL CALCULATIONS

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649168446

Physico-chemical calculations by Joseph Knox

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

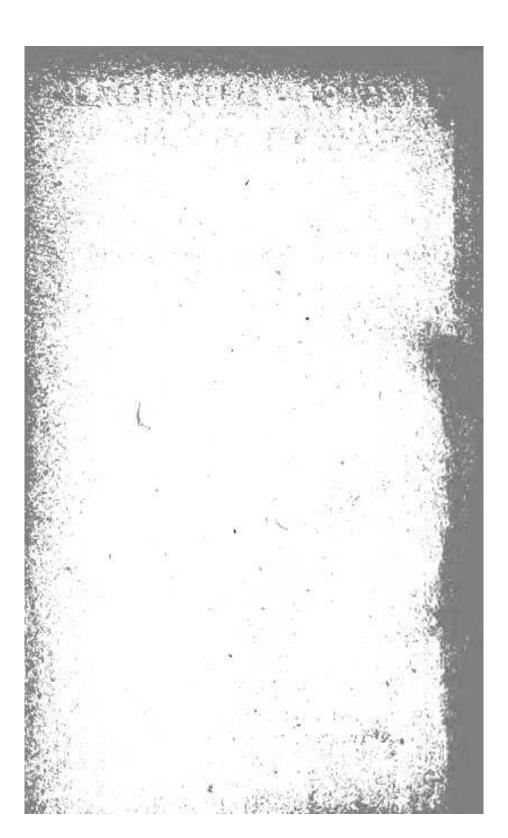
www.triestepublishing.com

PHYSICO-CHEMICAL CALCULATIONS

Trieste

PHYSICO - CHEMICAL CALCULATIONS

BY


JOSEPH KNOX, D.Sc.

LECTURER ON INORGANIC CHEMISTRY, UNIVERSITY OF ABERDEEN

NEW YORK

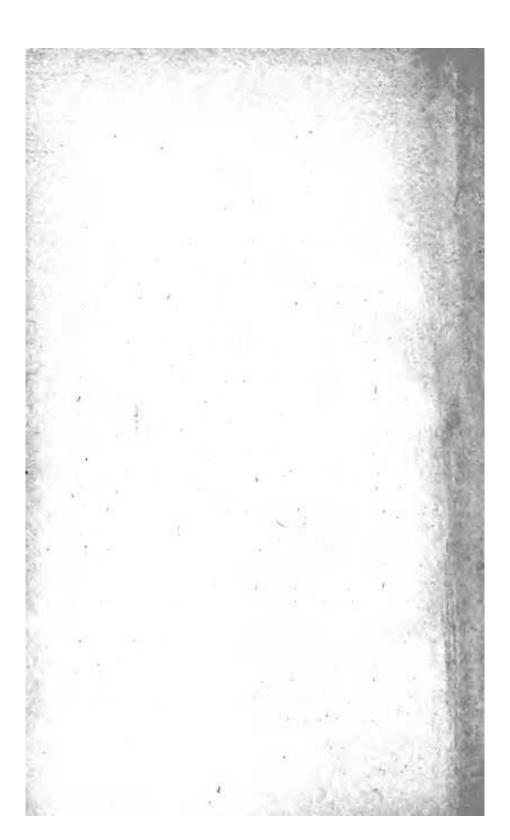
D. VAN NOSTRAND COMPANY TWENTY-FIVE PARK PLACE

1912 UNIVERSITY / F CALIFORIT. LIBRARY COLLEGE OF AGRICULTURE DAVIS

PREFACE

THIS collection of physico-chemical problems is based on Abegg and Sackur's "Physikalisch-Chemische Rechen-aufgaben" (Sammlung Göschen).

The original intention was simply to translate the German book, which consists of a short summary of the laws and formulæ used in the problems, and fifty-two typical problems, with full solutions. With the consent of the late Professor Abegg and of Dr. Sackur, however, I decided to arrange the subject-matter in chapters dealing with the main subdivisions of physical chemistry, and to write a short introduction to each chapter, dealing with the theory involved in the problems. Most of the problems in the "Rechenaufgaben" have been retained, a good many additional solved problems have been introduced, and a collection of problems for solution (with answers) has been added at the end of each chapter. The size of the book has thus been more than doubled.


Most of the problems have been taken direct, or with slight modification, from the original literature.

I shall be grateful to have any errors in the text pointed out to me.

I would take this opportunity of expressing my indebtedness to the late Professor Richard Abegg, and to Dr. Otto Sackur, of the University of Breslau, for their kindness in allowing me to make use of their "Rechenaufgaben" as the basis of this book.

48090 Ј.К.

ABERDEEN, December, 1911.

CONTENTS

CHAPTER 1.

PAGE

Gas Laws- Gaseous Dissociation	-1	Osmotic	P	ressure	-1	Exan	apl	es	
-Problems for Solution -	Ξ.			1.2			33		1

CHAPTER II.

Density	and Specific Volume of Solids, Liquids, Liquid	Mixture	14	
and	Solutions-Examples-Problems for Solution -	2019 A. 1975 CO.		14

CHAPTER III.

Specific	and	Mo	lecul	R.C	Refrac	tivit	$y - E_{2}$	xamp	les-	Proble	ems	for	
Solu			- 1	-			14				-	-	19

CHAPTER IV.

Molecular Weight from Lowering of Vapour-pressure-Influence	
of Temperature on Vapour-pressure-Examples-Molecular	
Weight from Lowering of Freezing-point-Molecular Lower-	
ing of Freezing-point from Latent Heat of Fusion-Molecular	
Weight from Elevation of Boiling-point-Molecular Eleva-	
tion of Boiling-point from Latent Heat of Evaporation-	
Examples-Problems for Solution	24

CHAPTER V.

Surface Tension,	Molecular	Weight a	and	Degree (f	Associ	ation	of	
Liquids-E:	amples-P	roblems	for	Solution	÷	2000	-		41

CHAPTER VI.

Thermochemistry-Examples-Problems for Solution - - 45

CHAPTER VII.

Vel	ocity of 1	Reaction -!	Monomo	lecular	Reaction-	-Bir	nolec	ular	Re-	
	action-	-Examples	-Proble	ms for	Solution					53

PHYSICO-CHEMICAL CALCULATIONS

CHAPTER VIII.

PAGE

Law of Mass Action — Equilibrium-constant — Influence of Temperature on Equilibrium-constant—Affinity, Change of Free Energy or Maximum Work of a Reaction—Partition Law—Solubility of Gases—Examples—Problems for Solution 62

CHAPTER IX.

Ohm's	Law-Heating	Effect	of (Jurren	nt—F	arad	ay b	Law	<u> </u>	
E	xamples-Specific	, Equiv	alent,	and	Mole	cular	Cond	luctiv	ity	
of	Electrolytes-D	egree o	f Di	socia	tion-	-Diss	ociat	ion-c	on-	
	ant — Examples -									
	lity-product - Ex									
	ems for Solution		-			-	-			-100

CHAPTER X.

Electromotive Force-Ele	ctrode	Pot	entia	I-N	orma	l Pot	entia	1	
Concentration Cells -	- Ele	etron	notive	Fo	rce	of G	laiva	nic	
Elements-Diffusion	Poten	tial-	-Oxid	ation	.redu	iction	Pot	en-	
tial-Affinity, or Maxin	mum '	Work	c of a	Read	tion	in a G	lalva	nic	
Element - Gibbs-Hel	mholt	z E	lquati	on -	- Exa	mples	s - P	ro-	
blems for Solution		a).	್ರಾ						14

CHAPTER XI.

Diffusion-Example				-Radio-activity-Examples						•	•	•	182
INDEX	-	242		2			32		-			-	187

viii

PHYSICO-CHEMICAL CALCULATIONS

CHAPTER I

GAS LAWS-GASEOUS DISSOCIATION-OSMOTIC PRESSURE

Gas Laws

THE relation between the pressure, volume and temperature of any given mass of gas is expressed by the equation

(**r**)
$$\frac{Pv}{T} = \frac{P'v'}{T}$$

where P and v are the pressure and volume corresponding to the absolute temperature T and P' and v' the pressure and volume corresponding to the absolute temperature T. The absolute temperature is equal to 273 + t, where t is the temperature centigrade. The pressure and volume may be expressed in any units.

This relation may also be expressed in the form

$$\frac{Pv}{T}$$
 = constant, or Pv = constant × T.

The value of the constant varies with the units of pressure and volume and with the mass of gas considered. For the gram-molecular quantity of all gases, however, the value of the constant is the same. For a gram-molecule of a gas the equation, therefore, becomes

$$Pv = RT$$
,

and for n gram-molecules

(2) Pv = nRT (Boyle, Gay-Lussac, Avogadro).

1