DIFFERENTIAL AND INTEGRAL CALCULUS: WITH APPLICATIONS

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649562428

Differential and Integral Calculus: With Applications by Alfred George Greenhill

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

ALFRED GEORGE GREENHILL

DIFFERENTIAL AND INTEGRAL CALCULUS: WITH APPLICATIONS

DIFFERENTIAL AND INTEGRAL CALCULUS.

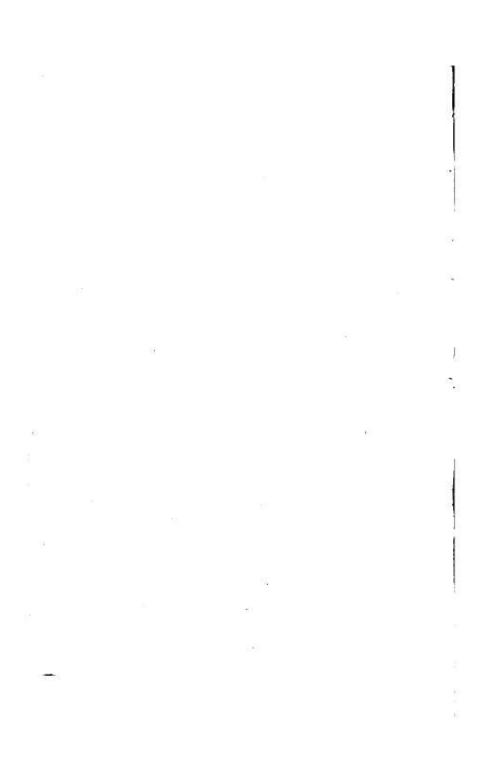
4

.

DIFFERENTIAL AND INTEGRAL 34761 CALCULUS,

WITH APPLICATIONS.

BY


ALFRED GEORGE GREENHILL, M.A.,

PROPERSOR OF MATERNATICS TO THE SERVICE CLASS OF ARTILLERY OFFICERS, WOOLWICE;

Zondon :

MACMILLAN AND CO.

1886.

CONTENTS.

CHAP.											PAGE.
I,—]	Differ	ENTIAT	ion, .	*:			*0	*	33 .	•	1
	tions. Differen	Exponentiation	and Circ ential, La of a Sun . Exam	garith: a, Prod	nic, s	and Hy	perbo	lie F	unetic	ms.	
II.—J	NTEGR.	ATION,		23			¥2;		17		59
	Function and Center of I	ons. C ntroids. Pappus.	gebraical orrected Rectific Integra ntegrals.	and D ation. tion by	Volu Parts	te Inte imes ar s. For	grals. d Sur	Qu faces	adrat	ure or-	20
III.⊸s	vocess	IVE D	IFFEREN	TIATIO	N,	12			100		129
		ss and I	Leibnitz. nvolutes								
IV.—E	XPANSI	ON OP	FUNCT	ions,			¥.	*	974		189
			f Taylo Forms,				and	app	licatio	na.	
V.—J	PARTIAL	Dirr	erenti.	TION,		•	8		()	20	217
	Integra		two or The Plan		C 400 (00)						

CONTENTS.

VI.—Curves	IN G	ENER	LAL,		-0					12	238
Pola ems. Hart's Trajec	Paral	e and lel M	Polar otions	Recip	procal njuga	Curve	es. P	eaucel	lier's	and	
APPENI	ix,	*	*	() * ()	5	æ.	10 10	•	*	12	266
Index,	8.0	ě	×	ii.	87	(6)		G	*	2	269
				ERR	ATA.						
Page 1, line	5 fr	om b	otton	,—fo	r "(f.	z+h)	rea	d f(x	+ h).		
Page 106, I	ine 9	from	bott	om—							
for	. "n/	(sin x)*dx=	- (si	n x)*	2 cos	x+(n	-1)/	(sin :	r)n-)	dx".
	d n	200									
Page 128, E	x. 25,	read	_								
$(Ax^3 + 3$	Bæ+	3 <i>C</i> z +	D)(2	1y3+3	3By2+	3Cy	+D)(Az3+	3 <i>Bz</i> 4 +	3Cz	+D)
	-{.	Axyz-	B(y	+ zx -	+ xy) -	+ C(x	+y+)+D	} : ;		
and2/(Az	3 + 3B	x* + 3	Cx+	D)-ta	x+					76	

PREFACE.

THE present Treatise is intended as an introduction to the study of the Differential and Integral Calculus, but will be found to contain what is necessary to know in order to pass on to the subjects which presume a knowledge of the Calculus.

I have endeavoured to make this book suitable not only for the mathematical student, but also for men like engineers and electricians who require the subject for practical applications, to whom even a slight knowledge of the notation and methods of the Calculus is becoming more and more indispensable.

Hitherto in this country the influence of Newton, although the inventor of Fluxions, has been employed to delay the study of this subject, and make a knowledge of it the privilege of a select few; my object in writing this treatise has been mainly to present the subject in as simple a manner as possible, in order to encourage a larger number of students to cultivate it.

In order, however, to keep the size of the book within reasonable limits, it is assumed that the reader has already acquired a knowledge of the elements of the subject of Algebra, Trigonometry, and Co-ordinate

,