VALVE-GEARS

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649728411

Valve-Gears by H. W. Spangler

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

H. W. SPANGLER

VALVE-GEARS

Trieste

C. Annive

VALVE-GEARS.

Ľ

ł.

28

BY H: WP SPANGLER, Whitney Professor of Muchankal Engineering in the University of Pennylvenia.

Analysis by the Zeuner Diagram.

ONE HUNDRED AND NINE ILLUSTRATIONS.

SECOND EDITION, REVISED AND ENLARGED.

SECOND THOUSAND.

×.

NEW YORK; JOHN WILEY & SONS. LONDON; CHAPMAN & HALL, LTD.

1898.

COPVEIGHT, 1890, SY H. W. SPANGLER,

13

<u>a</u>

٠

1

144

10 18

39

.

32

् स् या स्टब्स् या स्टब्स्

ROBERT DRUMMOND, ELECTROTYPER AND PRINTER, NEW YORK,

Engin Mr From the Library of Rof. C.S. Denison 7-2-21

PREFACE.

THE writer, needing a book for class use which would give in one volume those parts of the theory of valve-gears necessary to a clear understanding of the subject, has prepared the following work.

All the standard text-books on the subject, the current periodicals, and working drawings have been called on for data and methods, and the works of Zeuner, Auchincloss, Rankine, Whitham, Halsey, Marks, Reuleaux, Bilgram, and the files of *Engineering* and the *Engineer* have been freely used in preparing the text; but the matter has been put in its present shape by the author.

A few of the methods are original, but others confronted with the same problems have probably solved them in the same or in a better way.

The designing of valve-gears is entirely a drawing-board process; and in all but radial gears, and to a great extent even there, the actual method of laying down the work is given.

The mathematical proof of the methods and results used is given whenever possible.

The problems are in most cases made up from the data of engines actually in use.

H. W. SPANGLER.

UNIVERSITY OF PRNNSYLVANIA,

PHILADELPHIA, PA., August 20, 1890.

....

÷

r

đ

64 80

CONTENTS.

5.455

• • •

1 1 1

25

13

CHAPTER I.

PLAIN SLIDZ-VALVES,

x.	Plain slide-valves,	3005	•			20		3 4 3		•		I.
3.	Method of action of v	alve			÷.							2-
3.	The eccentric, .		22	1	÷.	12	1.			8		2.
4.	Valve seat, face, and	ports	3, .	10			÷.		•			3
5.	Lap,	-		86					•		39	4
6.	To determine positio	a of	valve	and	pisto	n,			•			4
7.	Distance valve has m	oved	fron	1 its e	entre	l pos	ition,					5
8,	Yoke-connection,	3 9	6 36				219	3 9 1	•	\mathbf{x}		5
9.	Valve-diagrams, .	4							•			6-
10.	Angle between crank	and	CCCCD	tric 9	ю",	12	34		- E	÷.		7

CHAPTER II.

THE ZEUNER DIAGRAM

11.	To draw th	ne va	lve-di	agra	m,	23			82	10				10
12,	Point of an	Imise	sion,	8		8 02		300				٠		10
13.	Angular as	dvane	ce,	18	0.000	•			18	0.000	•			IL
14.	Lead, .					1	12,							
15.	5. From a given engine to draw the diagram,													13
16.	Distributio	am,	5 9 00	•	٠		14							
17.	. Separate diagrams for each end of the cylinder, .											٠		34.

CHAPTER III.

OVERTRAVEL AND PROBLEMS.

18,	Overtravel,	•	×	. A	.885	. 8.	. ×.	. X.,	38				19
19.	Problem I,	give	1 7,	d, cut	-off a	nd er	khaus	t clos	nare,	300	9 7		19
	Problem 2,	give	n lag	, ext	aust	lap, l	cad a	nd cu	ut-off,		•		20.
												v	

CONTENTS.

21.	Problem 3, given cut-off, angle of lead, port and ov	ertra	rel,	12	21
22.	Problem 4, given cut-off, lead and port-opening,			3	 22
23.	When the piston and eccentric rods do not travel or	para	llel li	ines,	23
24.	To determine the position of the eccentric,			20040 20 4	24
25.	Effect of changing dimensions,		26	24	 25

CHAPTER IV.

.

MODIFICATIONS OF THE PLAIN SLIDE-VALVE.

26.	Double-ported valves	ŔĊ.	1		0.	156		28		1913	28
27.	Allen or Trick valve,							S.,			28
28.	Piston-valves, .) š	- 2	2	1					30
29.	Taking steam inside,	1.				16		1		8.0	30
. 30.	Two or more valves,	۰,	e			0.00	3 • 3		20		31

CHAPTER V.

EQUALIZING CUT-OFF, LEAD, COMPRESSION, AND RELEASE.

31.	Equalizing cut-off,	•	10 T	100	3.9	1005					34
32.	Equalizing cut-off and	lead	l, ,				•				35
33.	Equalizing exhaust an	d co	mpressio	n, .						111	36
34.	Circular diagram for	lete	mining r	noven	aent e	aig lo	ton.	10	.	14	37

CHAPTER VI.

DESIGNING AND SETTING VALVES.

35.	Designing a plain slide-valve,	×2		10	3 6 33	•3	30	÷.	32	40
36.	To determine approximate solu	tion,			3.00		*			41
37.	Equalizing lever,									43
38.	To put the engine on the centre	9. C		1	8.6		2			45
39.	To set the valve,	·**	\mathbf{x}	56	3.00		30		363	45

CHAPTER VII.

e.

THE STEPHENSON LINK.

40.	The link,		(\mathbf{r})	•			39		•		47
41.	Point of suspension,										48
42.	Slip of block, ,										48
43-	Radius of the link,			8 3	۲						50
.44.	Kinds of links, .	1.1	3.003	•%	32	12	12	1.000	•3	•	50

vi

CONTENTS.

224 IV 2

4

.

2

.

1.5

CHAPTER VIII.

THE VALVE-DIAGRAM.

45.	Travel of the valve,	•	4		1						52
46.	The valve-diagram,	16	6		1		12				55
47.	Curve of centres,	\mathbf{x}_{i}			.	303	12		23	1.00	56
48.	To lay down the valu	e-di	agram,							30.00	56
49-	The virtual eccentric,			25			•				58
50.	Designing the gear,	85		30U		3.00					58
51.	Valve-stem and eccen	tric-	rod,		3. .	3.002	•2			S2003	58
52,	Length of link, .	•							22		59
53-	The hanger, .			1							59
54	Link suspended at bo	tton	or cer	tre	of ch	ord,	•0		30	10.00	60
55.	Open and crossed rod	ls,	•		58 .	10000	•0			20.000	6τ

CHAPTER IX.

EQUALIZING LEAD AND CUT-OFF.

56.	Equalizing lead,		36			 0 	•		3 .	166	63
57.	Equalizing cut-off, .	÷.,		25		82			S. .	0.00	65
58	To lay down the motion		- 12 I		102	. 8	•				67
59.	To lay down the centre	of the	e trave	l of th	he val	lve,	- 18 I.				67
•60.	To determine the centre	of su	apensi	on of	the b	ange	· ·				68
61.	Position of stud, .				59 9 00	15			.	0.00	68
-62.	Reducing slip,		1		1.						70
61.	Error of the Zeuner dias	cano.	100	- 52	93.20	- 25	- 23	32	100	553	70

CHAPTER X.

THE GOOCH MOTION.

-64.	The Gooch link,			25	×	æ	3			æ	8.	2.9	75
65,	Movement of the	t va	lve,	4								•	76
-66.	Constant lead,	1			20		14	1.5		1	1		78
-67.	Radius of link,	•				10	100	0.40			14		78
-68.	Suspension-rod,		•						•		*		79
-69.	The hanger,												80
70.	The valve-diagra	m,	•0					- 22				8	80
71.	To design a Goo	ch i	motio	a,		3 8					3.9	500	82

CHAPTER XI.

THE ALLEN AND FINK MOTIONS.

72.	The Allen link-motion,	38) 190	÷.	12	843	# 2:		1.672	85
73.	The valve-diagram,	10	32	30	-03			 0.000	85

vii