AN ELEMENTARY TREATISE ON HYDRODYNAMICS AND SOUND

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9781760578404

An elementary treatise on hydrodynamics and sound by A. B. Basset

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

A. B. BASSET

AN ELEMENTARY TREATISE ON HYDRODYNAMICS AND SOUND

AN ELEMENTARY TREATISE

ON

HYDRODYNAMICS AND SOUND

BY

A. B. BASSET, M.A., F.R.S.

TRINITY COLLEGE, CAMERIDGE.

CAMBRIDGE: DEIGHTON, BELL AND CO. LONDON: GEORGE BELL AND SONS.

1890

[All Rights reserved.]

Cambridge: PRINTED BY C. J. CLAY, M.A. AND SONS, AT THE UNIVERSITY PRESS.

PREFACE.

THE treatise on Hydrodynamics, which I published in 1888, was intended for the use of those who are acquainted with the higher branches of mathematics, and its aim was to present to the reader as comprehensive an account of the whole subject as was possible. But although a somewhat formidable battery of mathematical artillery is indispensable to those who desire to possess an exhaustive knowledge of any branch of mathematical physics, yet there are a variety of interesting and important investigations, not only in Hydrodynamics, but also in Electricity and other physical subjects, which are well within the reach of every one, who possesses a knowledge of the elements of the Differential and Integral Calculus and the fundamental principles of Dynamics. I have accordingly, in the present work, abstained from introducing any of the more advanced methods of analysis, such as Spherical Harmonics, Elliptic Functions and the like; and, as regards the dynamical portion of the subject, I have endeavoured to solve the various problems which present themselves, by the aid of the Principles of Energy and Momentum, and have avoided the use of Lagrange's equations. There are a few problems, such as the helicoidal steady motion and stability of a solid of revolution moving in an infinite liquid, which cannot be conveniently treated without having recourse to moving axes; but as the theory of moving axes is not an altogether easy branch of Dynamics, I have as far as possible abstained from introducing them, and the reader who is unacquainted with the use of moving axes is recommended to omit those sections in which they are employed.

The present work is principally designed for those who are reading for Part I. of the Mathematical Tripos, under the new regulations, and for other examinations in which an elementary knowledge of Hydrodynamics and Sound is required; but I also trust that it will be of service, not only to those who have neither the time nor the inclination to become conversant with the intricacies of the higher mathematics, but that it will also prepare the way for the acquisition of more elaborate knowledge, on the part of those who have an opportunity of devoting their attention to the more recondite portions of these subjects.

The first part, which relates to Hydrodynamics, has been taken with certain alterations and additions from my larger treatise, and the analytical treatment has been simplified as much as possible. I have thought it advisable to devote a chapter to the discussion of the motion of spheres and circular cylinders, in which the equations of motion are obtained by the direct method of calculating the resultant pressure exerted by the liquid upon the solid; inasmuch as this method is far more elementary, and does not necessitate the use of Green's Theorem, nor involve any further knowledge of Dynamics on the part of the reader, than the ordinary equations of motion of a rigid body. The methods of this chapter can also be employed to solve the analogous problem of determining the electrostatic potential of cylindrical and spherical conductors and accumulators, and the distribution of electricity upon such surfaces. The theory of the motion of a solid body and the surrounding liquid, regarded as a single dynamical system, is explained in Chapter III., and the motion of an elliptic cylinder in an infinite liquid, and the motion of a circular cylinder in a liquid bounded by a rigid plane, are discussed at length.

The Chapter on Waves and on Rectilinear Vortex Motion comprises the principal problems which admit of treatment by elementary methods, and I have also included an investigation due to Lord Rayleigh, respecting one of the simpler cases of the instability of fluid motion.

In the second part, which deals with the Theory of Sound, I have to acknowledge the great assistance which I have received from Lord Rayleigh's classical treatise. This part contains the solution of the simpler problems respecting the vibrations of strings, membranes, bars and gases; and I have also added a few pages on the statical problem of the flexion of bars. A few sections are also devoted to the Thermodynamics of perfect gases, principally for the sake of supplementing Maxwell's treatise on Heat, by giving a proof of some results which require the use of the Differential Calculus.

I have to express my best thanks to Professor Greenhill for having read the proof sheets, and for having made many valuable suggestions during the progress of the work.

CONTENTS.

PART I.

HYDRODYNAMICS.

CHAPTER I.

ON THE EQUATIONS OF MOTION OF A PERFECT FLUID.

ART												PAGE
1.	Introduction	-	1.0	9.0	83	400	90		20	120	- 2	1
2.	Definition of a fluid		0.000	677		-	40	-	90	-	190	1
3.	Kinematical theorems.	La	grangi	an a	nd flux	me	thods			-		2
4.	Velocity and acceleration	11313	PE - 2 (* 10.75.)		ngian				- 8	-	- 8	2
5.	do.			0.75	nethod		20	90		744	-	3
6.	The equation of continu	tity				No.	40	**	+0			4
7.	The velocity potential				78	- 33	- 3	- 53	- 33	-		5
8.	Molecular rotation .	12	276		-	277	20	91	90	- 20	-	6
9-1		ream				55	53	***	***	***	-	6
11.	Earnshaw's and Stokes'					41	- 99					7
12.	The bounding surface	339	2.5	993	677	20	27	70	92	342	340	8
13.	Dynamical theorems.	Pres	sure a	c eve	ery poi	nt o	f a fi	aid is	equi	al in	all	
15247	directions		Marayasan Ma		154 154							8
14.	The equations of motion		73	3				20	\$31	40	26	9
15-1	6. Another proof of the	e eqe	ations	of 1	notion		60		*10	**	90	10
17.	Pressure is a function o				7. Table 1			-	80	28		13
18.	Equations satisfied by t				of mo	lecu	lar ro	tatio	n .	- 10		13
19.	Stokes' proof that a vel									at a	ny	
	particular instant	7										14
20.	Physical distinction bet	weer	a rotat	ioua	I and i	rrot	ationa	1 mo	tion			15
21.	Integration of the equat									exist	в.	16
22.	Steady motion. Bernot				· Committee				*11	****	20	16
23.	Impulsive motion .					9			- 20			17
24.	Flow and circulation	*	196	28	38	19	33	(340)	63	+3:	*:	18
	D II										h	

CONTENTS,

		Demonstrated										14000	44400
25.	Cyclic and acycl	lie irro	tation	al m	otion	. Ci	reula	tion i	is in	depen	dent	of	***
no.	the time	1 Jun 4					40		*	*	*		19
26.	Velocity potentia	u aue i	o a so	urce	•			60	+ 1	*0			20
27.	do. do.	due to due to	o a do	unier	e La La		en (C) Considera	*77	20		•	*	21 21
28. 29.	do.	due t	0 1k 1801	arce :	in tw	o atu	iensic	MIS	*8		*	*	22
30.	Thansa of image	CETTO D	0 8 40	dinter	211-1	wo at	mens	EGILM	+	*.*	*	(4)	22
	Theory of image Image of a source		nlown)33	•	* 1	*	*0		*	23
31. 32.	Image of a doubl	er in a	paate	1	1			11		· .		-0	20
0 éx	the sphere .												23
33.	Motion of a liqui		nudia		e de con		al. for	11			allata		25
34.	Torricelli's theor												26
35,	Application of t	he her	sathani	n of	*	dtol -	antin	*	nd 4		otion		20
OHAC.	Application of t	ne nyı	Co ver	is or	Pura	aner s	AM: PEU	ns, a	nu u	1113 1113	orma	101	27
36.	liquid flowing The vena contra Giffard's injector	g Out o	i a ves	OSP4	.5	85.		3	**	*		*	28
	Olffand's injector	Olac .		3	8								29
37.	Unamales	600	*	24		0000	6.0	600	*.		+	٠	
	Examples .	(8)	3.0	1.7				7.1	8.0	* :	+	2	3.1
M 38.	OTION OF CYL												D. 35
39.	Statement of pro Boundary condit	ions fo	E 0 00 0	lindo	r 1996	vino i	n n 19	hima	30	*			36
40.	Velocity potentia	I and e	orekan.	fore	ction	Ana	to th	o mo	tion	of n	oiron	low	30
2000	cylinder in a												38
41.	Motion of a circu	Dar evi	inder	mude	r the	netic	n of	eravi	tv.	*	3.00	(*)	38
12.	Motion of a cylin												00
	drical envelo												40
43.	Current function	due 1	o the	moti	ion c	fac	vlind	er w	hose	erosa	sect	ion	- 10
575	is a lemnisca	te of B	ernou	111			5		******				41
11.	is a lemnisca Motion of a liqui	d cont	ained	withi	плп	eanil	atera	1 pris	m	- 8	- 0		42
45.	do.		do.		mm	ellip	lo ev	linder	7		-		43
46.	Conjugate functi	ons.			2001	4		***		00.0	200		43
47.	Conjugate function	due to	the n	notion	n of a	an ell	iptic e	eylind	ler				44
48.	Failure of solution	on whe	n the	ellipt	ie cy	linder	dege	nerat	es in	to n	lami	ma.	45
19.	Motion of a sphe	re und	er the	actio	n of	gravi	t.v				1		47
50,	Discontinuor Motion of a sphe Motion may been	me un	stable	owin	ig to	the e	xister	toe of	a he	llow	1	9	49
51.	Effect of viscosit	y; ami	defin	ition	of th	ie coe	flicier	st of	visco	sity	343	940	50
52.	Resistance exper	ienced	by a s	hip i	n 1934	ving	throu	gh w	ter	*		121	and the
53.	Resistance exper Motion of a sphe	rical p	emluh	am, v	chiel	ia no	rrota	ded l	by lie	him	4	4	
54.	Motion of a sph rigid spheric	erical	pendu	lum,	wher	the	liquie	d is c	onta	ined v	withi	n a	
	Examples	managed.	100		100	25.74			100	2	98	8	75

CHAPTER III.

MOTION OF A SINGLE SOLID IN AN INFINITE LIQUID.

ART.						PAGE
55.	Fundamental dynamical principles	41	200	4		59
56.	Green's theorem	*13	900			60
57-6	51. Applications of Green's theorem					61
62.	Conditions which the velocity potential must satisfy		- 8			63
63.	Kinetic energy of liquid is a homogeneous quadratic	fu	action	of	the	
	velocities of the moving solid	*00	**		940	64
64.	Values of the components of momentum					66
65.	Short proof of expressions for the kinetic energy and m	ome	ntum	*		68
66.	Motion of a sphere	*01	90	360	40	68
67-6	39. Motion of an elliptic cylinder under the action of no	for	ces			69
70.	Motion of an elliptic cylinder under the action of gravit					74
71.	Helicoidal steady motion of a solid of revolution .		80		4	75
72.	Conditions of stability. Application to gumery .					77
	75. Motion of a circular cylinder parallel to a plane		- 20	1.0		79
	Examples	40	96		*	82

CHAPTER IV.

WAYES.

Kinematics of wave motion .	111				97			*	85
Progressive waves and stationary wa	ves	*1	***	**		12			87
Conditions of the problem of wave n	notio	m		90		(4)	90	390	88
30. Waves in a liquid under the acti	on c	fgra	vity	*		546	-6	121	89
33. Waves at the surface of separation	on of	two	liqui	ds					91
35. Stable and unstable motion	60	28			30	(4)			93
Long waves in shallow water .	40	***	40	0.0	040	5+5	c+c	106	96
Analytical theory of long waves		2		Ş		3			97
Stationary waves in flowing water					4		80	36	98
Theory of group velocity	36	90	140	190	190	230	2.0	204	99
Capillarity								94	100
Capillary waves-conditions at the	free	surfe	100	13		200			101
Capillary waves under the action of	gra	vity	96.5	340	100	250	0.6		101
do. produced by wind	Ac.								102
Examples	Ş	2 2 3		G4.	33		0	82	104
	Progressive waves and stationary wave Conditions of the problem of wave in 30. Waves in a liquid under the action 35. Stable and unstable motion Long waves in shallow water Analytical theory of long waves Stationary waves in flowing water Theory of group velocity Capillarity Capillary waves—conditions at the Capillary waves under the action of do. produced by wind	Progressive waves and stationary waves Conditions of the problem of wave motio 30. Waves in a liquid under the action of 33. Waves at the surface of separation of 35. Stable and unstable motion Long waves in shallow water Analytical theory of long waves Stationary waves in flowing water Theory of group velocity Capillarity Capillary waves—conditions at the free Capillary waves under the action of grav do. produced by wind	Progressive waves and stationary waves . Conditions of the problem of wave motion so. Waves in a liquid under the action of grass. Waves at the surface of separation of two stations. Long waves in shallow water . Analytical theory of long waves . Stationary waves in flowing water . Theory of group velocity . Capillarity . Capillary waves—conditions at the free surface capillary waves under the action of gravity do. produced by wind .	Progressive waves and stationary waves	Progressive waves and stationary waves	Progressive waves and stationary waves Conditions of the problem of wave motion 30. Waves in a liquid under the action of gravity 33. Waves at the surface of separation of two liquids 35. Stable and unstable motion Long waves in shallow water Analytical theory of long waves Stationary waves in flowing water Theory of group velocity Capillarity Capillary waves—conditions at the free surface Capillary waves under the action of gravity do. produced by wind	Progressive waves and stationary waves Conditions of the problem of wave motion 30. Waves in a liquid under the action of gravity 33. Waves at the surface of separation of two liquids 35. Stable and unstable motion Long waves in shallow water Analytical theory of long waves Stationary waves in flowing water Theory of group velocity Capillarity Capillary waves—conditions at the free surface Capillary waves under the action of gravity do. produced by wind	Progressive waves and stationary waves	Progressive waves and stationary waves Conditions of the problem of wave motion 30. Waves in a liquid under the action of gravity 33. Waves at the surface of separation of two liquids 35. Stable and unstable motion Long waves in shallow water Analytical theory of long waves Stationary waves in flowing water Theory of group velocity Capillarity Capillary waves—conditions at the free surface Capillary waves under the action of gravity do. produced by wind