PRINCIPLES OF MECHANICS, AND THEIR APPLICATION TO PRIME MOVERS, NAVAL ARCHITECTURE, IRON BRIDGES, WATER SUPPLY, &C. BEING AN ABSTRACT OF LECTURES DELIVERED TO THE CLASS OF CIVIL ENGINEERING AND MECHANICS IN THE UNIVERSITY OF GLASGOW, SESSION 1872-73 Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649510399

Principles of Mechanics, and Their Application to Prime Movers, Naval Architecture, Iron Bridges, Water Supply, &C. Being an Abstract of Lectures Delivered to the Class of Civil Engineering and Mechanics in the University of Glasgow, Session 1872-73 by W. J. Millar

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

W. J. MILLAR

PRINCIPLES OF MECHANICS, AND THEIR APPLICATION TO PRIME MOVERS, NAVAL ARCHITECTURE, IRON BRIDGES, WATER SUPPLY, &C. BEING AN ABSTRACT OF LECTURES DELIVERED TO THE CLASS OF CIVIL ENGINEERING AND MECHANICS IN THE UNIVERSITY OF GLASGOW, SESSION 1872-73

PRINCIPLES OF MECHANICS,

*11**7**23

0

AND THEIR APPLICATION TO

PRIME MOVERS, NAVAL ARCHITECTURE, IRON BRIDGES, WATER SUPPLY, &c.

THERMODYNAMICS, WITH SPECIAL REFERENCE TO THE STEAM ENGINE.

BEING AN ABSTRACT OF LECTURES

DELIVERED TO

THE CLASS OF CIVIL ENGINEERING AND MECHANICS IN THE UNIVERSITY OF GLASGOW, SESSION 1872-73.

BY

W. J. MILLAR, C.E., SECRETART TO THE INSTITUTION OF ENGLINES AND SELEVITIONES IN SCOTLAND.

LONDON: E. & F. N. SPON, 48, CHARING CROSS. NEW YORK: 446, BROOME STREET. 1874.

JUN 20 1917 D. I.S. JRANSFERRED TO D. DODYARL COLLEGE LI-RARY

x

112296Ct 17

8 * *

I.

٢

83

38

15

22

Eng 258.74.5

1.

PREFACE.

As indicated on the title-page, the subjects treated of in this book constituted in a more extended form a series of Lectures delivered to the Class of Civil Engineering and Mechanics in the University of Glasgow during the latter part of session 1872-73.

Shortly after the death of Professor Rankine, the author was appointed to conduct the class referred to during the Professorial vacancy; and the various subjects treated of formed part of the complete course as entered in the syllabus of the class.

It having occurred to the author that a carefullyrevised abstract of these Lectures might be of use to students and others studying the various subjects treated of, the work as contained in the following pages is the result.

The subjects have been treated of as concisely as possible, numerical illustrations being occasionally given to assist the reader.

Various authorities have been consulted in the preparation of the present work; amongst others,

Professor Rankine's Works;

Moseley's Engineering and Architecture; Fairbairn's Mills and Millwork;

a 2

PREFACE.

Deschanel's Natural Philosophy, by Prof. Everett;
Shipbuilding in Iron and Steel (Reed);
Transactions Inst. Civil Engineers;
Transactions Inst. Engineers and Shipbuilders in Scotland;
Transactions Inst. Naval Architects;
Report (British Assoc.) Sea-going Qualities of Ships, 1869;
Annual of the Royal School of Naval Architecture and Marine Engineering;

and the various Engineering and Scientific periodicals, &c.

W. J. M.

GLASGOW, October, 1874.

iv .

CONTENTS.

•

												FAGE
ENERGY		88	1.00	4.0	22		••	22	**			1
PRIME MOVERS		**			4.5							3
DYNAMOMETERS												8
MUSCULAE POWER				2550	10							4
WATER POWES		32		(1 2)	2							5
STOBAGE OF WAT	TER	21			27			22	1.22		511	5
WATER WHERES		3	11		37	54	410	22			-	7
Vertical Water	Wh	eels	-	1000	32	-	227	-	1922	6225	22	7
Relation of the	Ter	ms F	mou	leo. X	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			1. C.	etual	Ene	1.	7
Undershot Wh												8
Undershot Wh	oels,	in w	hich	the	Wat	er ac	ta by	We	ght		-	11
Overshot Whee	da, in	n whi	ich t	be W	ater	acts	prin	cipa	lly b	y W	eight	11
High Breast W	heel	a										11
Efficiency of W	ater	Whe	sels	0003		(1993)	**	••	2000	3443		12
Speed of Water	r Wh	eels		÷.	a.	1.1			(c.)	5.1		13
Horizontal Wa	ter V	Vhee.	ls, o	Tur	bine	8					÷2	14
Reaction Whee	al l			32	55						44	15
WATER-PRESSURE	ENG	INDE			**							16
HYDRAULIO BAM											÷.	16
WINDKILLS											22	17
NAVAL ARCHITECT	TRE			3355	497	44	3435	**	5446			18
EQUILIBRIUM AND	ST.	ABILI	TT .	T F	LOAT	ING	Bon	CK8				18
Application to	Shin	8										22
Stability or Sti								10				24
Statical Stabili						- 60						24
Dynamical Sta	bility			1.								24
Methods of fine				centr	e						2	26
												- 6200
Simpson's Bule		Area	8	440		19.05	4400		0.000	0.00	**	26

CONTENTS.

										PAGS
WAVES		200	- 85	333		12				28
To Draw a Trochoid	Tate		1.000			**		3420.3	2.2	30
Action of Waves on a	Ship					2.				31
Instruments for Measu	uing	Roll		50	300					32
Stream Lines		185		1.2.2	2.2			22.1	22	33
Resistance to the Moti	on of	a Ve	ssel					1.		33
PROPULSION OF VESSELS	1.144	1.0	144	144	144		1993		**	36
Reaction of Propellers	i se	**			1.0					37
Paddle-wheel Propelle	rs						42			40
Screw Propellers .				- 4		88		**	26	42
Hydraulic Propellers					••				••	43
Horizontal Propellers			**		**					43
CONSTRUCTION OF VESSE	81	303	28	- 00	$(0, \epsilon)$		100		••	44
STRENGTH OF STRUCTURES					-				**	51
STRAINS IN GIRDERS							1.4.40			51
Factors of Safety										61
Method of Frames	- 1940			045				342		63
Method of Sections			14			**				65
FORMS OF GUIDERS			1.2							66
Plate Girders		11	10	1227	340	22				66
Lattice Girders								**		67
Bowstring Girders			12							68
Tubular Girders						66	1000	-	100	69
Arch Ribs										70
Suspension Bridges			1.2							71
Continuous Girders	- 200	30		0.00			0000			73
COMPOUND BEAMS										75
PLATFORMS OF BRIDGES		ι.	12							76
DEFLECTION OF BRAMS						23		100		76
STABILITY OF STRUCTURE		- 34		Sec.			222	423	-	78
Betaining Walls to res					**	**				78
Retaining Walls to res								••		82
Towers and Chimneys				**				**		82
STRENGTH OF SOLID CY						e.	**			85
Shafts and Ayles				••	••		••	-	••	85
STBENGTH OF HOLLOW (- 201		••				-+	12	22
Thin Shells, such as B				1111					0.000	87
								••	**	87
Thick Hollow Cylinder			성경관	raoli	89.970	Tende	7.8		12	87
STRENGTH OF SPRINGS	••		••	••	•••		••		**	88

8

vi

10

1

[0]

•

CONTENTS.

33

.91

THERMODYNAMICS			3				25		557	3	163	PAGE
8/59/10 003												
Sources of HEAT	65			100				+1		**		91
TRANSMISSION OF	HEA	T	44			÷9	66	1996		**		92
EXPANSION	12	**			\sim	\sim	**		3.4 C	\mathbf{x}	00	94
HEAT INDICATORS		9960		22	366				39.3	**	Sec.	97
LIQUEFACTION	**	500		22	-		÷	-		**	- 0	99
SPRCIFIC HEAT	**											100
COMBUSTION												102
STEAM BOILERS	÷.,											106
Relations betwe	en I	leat	and	Met	hani	cal I	Ener	37			3.2	108
STEAM ENGINES		(a)		$\mathbf{\tilde{n}}$					••	22	-	110
Indicated and N	Tomi	Iad	Hors	ю-ро	wer	0000		0.000	100			112
Indicator												117
COMPOUND ENGINE	88	300	320		100	- *	33			24		118
Condensers	82		397	82	1.75		35					120
HOT-ALE ENGINES				-	0.00		**		900			122
GAS ENGINES				**		2.5			122			122
ELECTRO-MAGNETIC	Eng	INES										123
WATER SUPPLY			••			-						124
FILTERS												125
CLEAR-WATER TA	NH			- C.								126
Ричко					1222	1993	22					126
FLOW OF WATER	THE	oug	H Pr	PES	64	-	3.32		-	55		128
SPROTRUM ANALITEUS		22	122	15		818		23	-	115	22	130
INDEX					-	343	55			54	L Le	133

98

52

121

vii

÷

4

 \mathbf{x}