ELEMENTS OF DYNAMIC: AN INTRODUCTION TO THE STUDY OF MOTION AND REST IN SOLID AND FLUID BODIES. PART I. KINEMATIC

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649571390

Elements of Dynamic: An Introduction to the Study of Motion and Rest in Solid and Fluid Bodies. Part I. Kinematic by W. K. Clifford

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

W. K. CLIFFORD

ELEMENTS OF DYNAMIC: AN INTRODUCTION TO THE STUDY OF MOTION AND REST IN SOLID AND FLUID BODIES. PART I. KINEMATIC

Trieste

ELEMENTS OF DYNAMIC.

9) 1):

194

.

80 (1997) 3.

Ø _____

34

18

ELEMENTS OF DYNAMIC

AN INTRODUCTION TO THE STUDY OF

2

200

MOTION AND REST

IN SOLID AND FLUID BODIES

W. K. CLIFFORD, F.R.S.

LATE FELLOW AND ASSISTANT TUTOR OF THINITY COLLEGE, CAMBRIDGE; PROFESSOR OF APPLIED MATHEMATICS AND MECHANICS AT UNIVERSITY COLLEGE, LONDON.

PART I. KINEMATIC.

 ± 22

5.1

•

39

1

London: MACMILLAN AND CO. 1878

[All Rights reserved.]

Cambridge: PRIVIED BY C. J. CLAY, M.A. AT THE UNIVERSITY PRES.

82

8 8

23

12

1

39

.

÷

38

2 2

ï

42

PAGE

÷.

BOOK I. TRANSLATIONS.

CHAPTEB I. STEPS.

												CA., CA. 8. CO. 1.
Introdu	ction .		21	21		197	æ	140				1
On Ste)B .		12	, ŝŝ.					11		1.5	3
Compo	ution of S	teps.	Ge	met	ey.	30			124			4
Compo	ition of S	teps,	Ale	ebra	- e				104	2.4	53602	7
	ion and D					2			84	÷.		11
	ntation of			200939 •5			1	2	84			14
Uniform	a Motion	•	47	*	101				232		120	15
Uniform	a Rectiline	ar M	otion	1.1								16
Uniform	Circular	Moti	on	1	2	8	2		68	19		18
	ie Motion		80 ₁₀	12	2	1	12	1		20		20
On Pro	ection									~		24
0.200 x 250 x 24	ies of the	Elline	86	- 31	2	1		~	6 5	32	23	27
	Harmonie	100 X X X 🖷 🕄		10	2	0	Ċ.		1	12	酒	81
	nd Harm				• 2			20 -				83
	ie Motion		HOIR		* 2		•	0.65		8 1	2.2	38
I argovi	io monon		899		8 3	<u>.</u>	908	18	95	13	33. 1	90
		CH	APT	'ER	11.	VEI	OCI	TIE	5.			
The Di	ection of	Motio	n.	Tan	gente.)	in.	140	*		S.	69.	41
Exact I	efinition	of Tax			15	12	34.2		24		2.9	44
Velocity	. Unifor	m	a.,	1	1	100		÷.			÷.	47
Velocity	. Variabi	e			12	3	÷.	÷.			22	51
Exact I	efinition o	of Vel	ocity	ían.	2 0	80	342		æ		28	56
Compos	ition of Ve	lociti	ies	•0		4.	÷.					59
Fluxion					25	1	1			15		62
Derived	Functions		3 4 3		400	10	28	ж.	\mathbf{R}		24	64
Hodogr	ph. Ace	lerat	ion	2	•3		4.5		040			67
	erse Meth		18	3			8	107				68
	The second s					100			- CC			

83

												by GR
Curvature	39	345	65	÷3		30	50		103	-22	12+	78
Tangential a	and 1	Norma	I Ace	elers	tion						. *	77
Logarithmic	Mot	tion	201900 21		1000	Ş.	1	਼	0	÷.		78
On Series	88	8992	63		<u>80</u>	×3	(6)		÷.	18	33	81
Exponential	Ber	ies	•0	2.5			300	392	5.4			88
The Logarit	hmie	Spira	1.	4	÷.		2	1	1	1	12	86
Quasi-Harm	onic	Motio	n in	a Hy	perbo	la		4	¥.	24	32 4	89

CHAPTER III. CENTRAL ORBITS.

The Theorem of Mon	ments	• •								92
Product of two Vector	rs .	. B	÷.			3	22		3 4	94
Moment of Velocity	of a M	oving 1	Point	t .	5	۲	26	34	12	96
Belated Curves .	•33	10	•		901		2.4	5×		100
Acceleration Inverse	ly as S	quare	of D	istanc	e	਼				105
Elliptic Motion .		18			°.	-	1			107
Lambert's Theorem	12000	616	•00				14	÷.	37	108
General Theorems.	The S	Iquared	Vel	locity						110
General Theorems.	The (Critical	Orb	it			12	12	ii.	113
Equation between u	and θ		20		(j.)		36	S.		116
						÷				

BOOK II. ROTATIONS.

CHAPTER L.

CHAPTER II. VELOCITY-SYSTEMS.

Spins .	25	1.t		29721		. xs	25	30	10		2.4	122
Composition	of Sp	ins	ũ.,	12.5	18	1				1		.128
Velocity-Syst	tems.	Tv	ists		12	1	1		8	- <u>2</u>		125
Composition	of Tr	vista			• 2	¥8		199		38	÷4.	126
Moments						- 10	- <u>2</u>					132
Instantaneou	s mo	tion	of a .	Rigid	Body	7.	- 22	24	÷	2		136
Curvature of	Roul	ette			340	à 🔬			343	80	32	140
Instantaneou	e Axi	8				x c						141
Degree of Fr	eedon	1	34 - C	61		1	12	÷.	1			143
Involute and	Evol	ate	5	19	3	0.0		: <u>1</u> 2	2	÷.	¥	144

. A.

CHAPTER III. SPECIAL PROBLEMS.

						10		PAGE
Three-Bar Motion	3 F				•2	21,	÷	146
Circular Boulettes .	ä.,				- 23	-		161
Double Generation of Cycloi	dal	Curves		12	2		2	152
Case of Radii as 1 : 2 .	11	35		¥0	¥3	.	3	158
Envelop of Carried Boulette		32 3	•	12	-			155

BOOK III. STRAINS.

CHAPTER I. STRAIN-STEPS.

Strain in Straight Line		×3	×	*	158
Homogeneous Strain in Plane	2.5				159
Representation of Pure Strain by Ellipse .	35			1	160
Representation of the Displacement	<u>i</u>		10		161
Linear Function of a Vector	10	•	20		162
Properties of a Pure Function	• 1				164
Shear	53	2	<u>.</u>		167
Composition of Strains	20		13	-	168
Representation of Strains by Vectors	1.2	43	8.3		170
General Strain of Solid. Properties of the Ellip	bioso	•			172
Representation of Pure Strain by Ellipsoid .	165		2		176
Properties of Hyperboloid	•	£10	80	10	177
Displacement Quadric	- 60	x ::	•	**	181
Linear Function of a Vector					185
Varying Strain	13		12	1	188

CHAPTER II. STRAIN-VELOCITIES.

i.

Homogeneou	as St	rain-l	Flux		33	59		10:03	0.00		30	191
Circulation		30					4					194
Strain-Flux	not]	Homo	geme	BUG						÷3		197
Lines of Flo	w an	d Vo	tex-I	lines	8¥	04	124	1941	•	Ω¢.	10	199
Circulation i	n No	n-Ho	moge	neous	Stra	in-Fl	ux	-				200

Q 81

vii

43

.

												PAGE
Irrotational 1	loti	on		<u>+</u> 2	•			100		- 2	20	208
Equipotentia	l Sa	rfaces	•		1					4		204
Motion partly	In	otatio	nal	÷3	20		10		2		124	205
Expansion		1900		 C 	 C 		20			3.0	26	207
Case of No E	тры	nsion										210
Squirts .		1.		2		1	- SQ		÷.		÷.	219
Whirls .	3470	8965	62	÷:				*			194	214
Vortices .				•3	**	20		*		α	-	216
Velocity in T	erm	s of E	xpan	sion	and f	lpin						219

.

t)

.

ñ,

viil