SCIENCE PRIMERS, III. PHYSICS

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649475353

Science Primers, III. Physics by Balfour Stewart

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

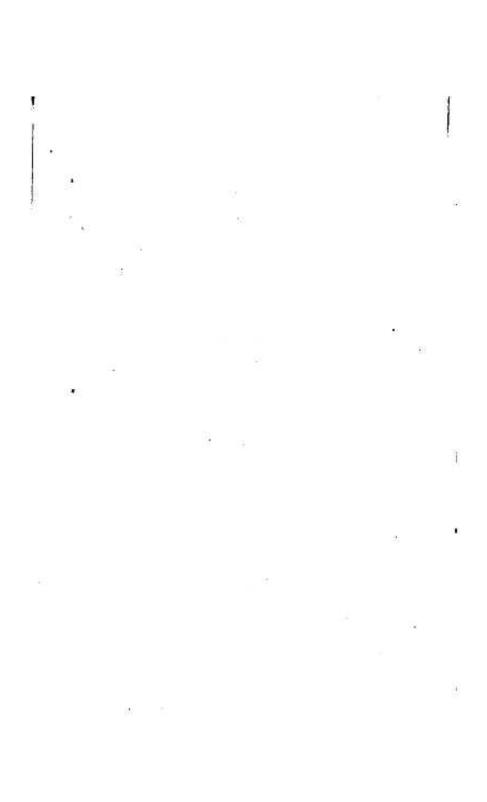
Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

BALFOUR STEWART

SCIENCE PRIMERS, III. PHYSICS



SCIENCE PRIMERS, edited by Professors Huxley, Roscoe, and Balfour STEWART.

ш.

PHYSICS.

883 BBS

SCIENCE PRIMERS.

PHYSICS.

BY

BALFOUR STEWART,

PROPESSOR OF NATURAL PHILISOPHY, THE OWENS COLLEGE, MANCHESTER, AUTHOR OF "ELEMENTARY LESSONS IN PHYSICS."

Mith Mllustrations.

NEW YORK:
D. APPLETON & COMPANY,
549 & 552 BROADWAY,
1873.

PREFACE.

In publishing the Science Primers on Physics and Chemistry, the object of the Authors has been to state the fundamental principles of their respective sciences in a manner suited to pupils of an early age. They feel that the thing to be aimed at is not so much to give information, as to endeavour to discipline the mind in a way which has not hitherto been customary, by bringing it into immediate contact with Nature herself. For this purpose a series of simple experiments has been devised, leading up to the chief truths of each science. These experiments must be performed by the teacher in regular order before the The power of observation in the pupils will thus be awakened and strengthened; and the amount and accuracy of the knowledge gained must be tested and increased by a thorough system of questioning.

The study of the Introductory Primer will, in most cases, naturally precede that of either of the abovenamed subjects; and then it will probably be found best to take Chemistry as the second and Physics as the third stage.

At the end of the volume will be found a list of the apparatus and materials required with prices attached. Fig. (2) 3 ⁰3 \$ 21 **9**0

TABLE OF CONTENTS.

			IN	TI	ton	σc	TIC	N.						
														PAGE
Definition of	Physic	5	٠					•	٠				1	1
,, 0	Motion	1	•						•				2	2
,, 0	Force	•	•	•	•	•	•	•		•	•	•	3	4
	THE	Сн	(E)	, 1	OR	CE	9 0	P	NA	TU	RE.			
Definition of	Gravity	y											4	7
,, 0	Cohesi	on											5	7
,, oi	Cohesi Chemi	cal	A	ttra	acti	on							5	9
Uses of thes	e three l	For	CE	۶.	•		•						7	10
		Но	w	G	RA.	VIT	Y.	ACT	rs.					
Centre of G	estive		200			882		320	23	1748	9129	V-125	8	11
The Balance	arny	•	•	•	•		•	•	•	•	•	•		13
The Dalance		•		•		•	•	•	•	•	•	•	9	-3
	THE ?	CH.	E	E :	STA	TE	5 0	P	MA	TT	ER.			
General Ren	narks										- 1		10	14
Definition of	Solids								:			٠	HI	16
,, of	Liquid	5											12	16
,, of	Liquid Gases		•			٠	•	٠				٠	13	16
	P	RO	PE	RT	TES	01	, 5	OL	IDS					
General Ren	arks on	Co	he	sic	m		-					-	14	16
Bending .			97			15.	4	-			1		15	19
Strength of	Material					i.	0	ं		:		:	16	20
Bending Strength of Friction		<u> </u>		•		Ť.	3		:		2	1	17	20
											-	•		
	Pı	ROP	E	TI	ES	OF	L	IQU	ID	3,				
Liquids keep	their si	ze t	ho	oag	h n	ot	the	ir s	haj	œ		٠	18	21
They commo	micate p	ress	u	C									19	21
Water-press	explaine	XI.	•										20	23
Liquids find	their lev	rel .											21	24

	200	-10				0000	100		-00		-		
		•000								C197		ART.	PAGE
Water-level and Spi												22	25
Pressure of deep W Buoyancy of Water	ater	٠.							٠			23	26
Buoyancy of Water							٠					24	28
Flotation in Water Comparative Density												25 26	30
Comparative Densit	y or	S	pe	clfic	G	my	ity					26	31
Buoyancy of other I	Liqu	iid	3									27	32
Buoyancy of other I Capillarity		٠			•	•		•	•	•	٠	28	33
	PRO	PI	CR7	CIES	0	# (SAS	25.					
Pressure of Air .	2				:	٠				2	٠	29	34
Weight of Air .												30	35
Barometer explained	<u> </u>	Иc	TCU	rial	C	olu	mn			-		31	38
Uses of the Barome	ter					7					়	32	40
Air-pump explained												33	41
Water-pump explain	ed-	-1	imi	its c	of t	WOL	kin	1Z			•	34	43
Syphon described	•				٠			•				35	46
	Ĩ	Mo	VVI	NO	Bo	DI	EŚ.						
Definition of Energy	V	730			8			-		200		36	47
of Work			3		10					:		37	47 48
Work done by a mo	qive	21	bod	Iv				:		73	-	38	49
Definition of Energy ,, of Work Work done by a mo Energy in repose.												39	50
	120			TIN									
Sound evolvined	53			esiende Vers			50000					40	52
Sound explained . What is Noise and	wha		ď.	mir.	ै	•		•	•		•	41	53
Sound can do work	** 1.04		11.11	310	•	•	•	•	•		•	42	54 54
Sound can do work It requires a mediun	. 11	11-	10		***	11	•	•		•	૽	43	54
Its mode of motion	the	OIL	ah.	the	A.		•	•	:		•		
Tes mode or motion	cur	νu	5-4	fire.	-	-	•	•	•	8	•	44	54
Its rate of motion		1000			···					274		45	56
Echoes or reflection How to find the nur	of	So	un	d.	1	1	-		85		1	46	57
How to find the nu	mbe	T	6	oihe	oti	ma	in	on		erry	nd	40	31

HEATED BODIES.

59

corresponding to any note . . .

Nature of Heat (first notice)

Expansion of bodies generally when heated
Thermometer described
How to make a Centigrade Thermometer
Expansion of Solids

of Liquids . .

TABLE OF CONTENTS.

viii