FECUNDATION IN PLANTS

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649177301

Fecundation in plants by David M. Mottier

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

DAVID M. MOTTIER

FECUNDATION IN PLANTS

Box.

FECUNDATION IN PLANTS

BY

DAVID M. MOTTIER, Ph. D.,

PROFESSOR OF BOTANY IN INDIANA UNIVERSITY

~00/18/100

Published by the Carnegie Institution of Washington 1904

Carnegie Institution of Washington, Publication No. 15.

> PRESS OF GIBSON BROS., WASHINGTON, D. C.

PREFACE.

This volume presents the subject of fecundation in the vegetable kingdom by the discussion of concrete cases, selecting from the great groups of plants certain typical representatives in which the sexual process seems to have been most thoroughly investigated. In the introductory chapter I have discussed typical processes of nuclear division and cell-formation, especially in spore mother-cells, together with a few topics dealing with certain phenomena of the cell and the significance of sexuality. This is considered necessary to a better understanding of sexual reproduction, for problems of sexuality, like problems of evolution, have in late years become reduced to problems of the cell, and, since the nucleus plays by far the most important part in fecundation, I am tempted to say to problems of the nucleus.

The processes leading to the development and differentiation of the gametes have been regarded as of prime importance, and they have therefore received emphasis. Whenever the subsequent history of the fecundated egg has been followed to any extent this has been done, as in the Ascomycetes and Florideæ, to show the relation between the real sexual process and the vegetative fusion of nuclei which has been confused with the sexual act, and, as in the Desmids, for the sake of pointing out certain nuclear phenomena that take place during the germination of the zygote with similar phenomena just preceding the sexual act in the Diatoms. Processes which are purely morphological are assumed or dealt with very briefly.

In grouping the representative types into the several chapters I have had in mind no particular theory of the evolution of sexuality, but merely the idea of the evolution of the plant kingdom and the corresponding differentiation of the sexual organs and cells accompanying this evolution in the groups of plants themselves.

The chapters dealing with the lower plants in which the development of the gametes is not known from a modern cytological standpoint, and in which the behavior of the sexual nuclei in the fusion of the gametes has not been followed—have been made as brief as possible. For a similar reason the mosses and liverworts have been omitted entirely. No attempt has been made to discuss the numerous theories bearing upon the subject. Whenever theoretical matters are touched upon the object has been chiefly to suggest probable lines of investigation. I have not hesitated, however, to express my own opinion in all cases in which my special field of study has given me a first-hand knowledge of the subject-matter.

To designate the sexual process which consists in the fusion of sexually differentiated cells, or gametes, and especially the fusion of their nuclei, the term fecundation has been used instead of fertilization—fecundation being the equivalent of the German Befruchtung and the French fécondation.

It has been necessary, of course, to copy numerous figures from the papers of other investigators, but in every case due credit is given.

In the citation of literature in the text the author is referred to by the year in which his work was published. No attempt has been made to give a complete bibliography, and no doubt many valuable references have been omitted.

The author is indebted to Professors W. Belajeff, H. O. Juel, F. Oltmanns, S. Ikeno, and to Dr. H. Klebahn, Dr. A. H. Trow, Dr. H. Wager, Dr. S. Hirase, and Dr. V. H. Blackman, for reprints of their papers, from many of which illustrations have been borrowed, and especially to Professor R. A. Harper for helpful suggestions.

DAVID M. MOTTIER.

INDIANA UNIVERSITY, August, 1902.

CONTENTS.

		Сн	APT	ER	I	-In	TRO	DOC	CTI	ON.					
															PAGE.
Nuclear division,															2-30
Karyokinesis	in ce	lls o	of th	ie lo	we	pla	nts i	in w	hic	h ce	ntro	sphe	res	are	
developed,				+	63									13	2-10
Dictyota,			(2)			63	2.5		0.5		2.5		*		2
Erysiphe,						-						2		14	. 7
Mitosis in pollen n							+								11-30
The first or he								2.6				1.00		0.00	11-26
Resting n							men	t of	the	chr	oma	tin :	spir	em	11
Developn	ient	of the	he s	pine	dle,										15
Chromoso	mes			?. Э.		2.6		- 20		*		100		(9)	17
Metakine	sis,														20
The anap	hase	Ç (8		33				9				-	32
The telop	hase		00				500		89		393		90		23
The nucle	olus							19				1.000			25
The second, o	r hor	noty	pic	div	isio	n,	100				-		8		27-31
Cell division,		- 3	8	1.4		100		20		6		114		99	31-44
The type of th	e hig	her	pla	nts,	0 4		204						100		31
Free cell-form			7,000					2							33
Cell-cleavage,							1.5		4		33		100		36
Cell-division in	a Die	tyo	ta a	nd !	Styp	oca	ulon	į		000		396			41
The centrosome an									0						44
The significance of	f the	se:	cual	pro	oces	s an	d th	ne n	um	erica	al re	duc	tion	of	250
the chromosome	5.			8				*		200		0.00		~	49-60
CHAPTEI	. 11		rec.	TINI	DAG	TON	. 1	for	TT D	Te	OG A	ME	rtre		
CHAPTE	. 11		.a.c.	O.W.	UA.	TON	, .,	10.	AL-D	10	oun		LAS	•	
Ulothrix and Hydr	odict	yon					880		30		*11		17		61-65
Copulation of game						**		01.00		224				*0	65
Ectocarpus,	X-Die		9		93		18		20				102		65
Listing,															53
CHAPTER I	[I	-Fe	CU	NDA	тю	N;	No	n-N	от	ILE	Isc	GAI	MET	ES	
2232432321016															67
Spirogyra, .				10		*				1.2		•		7	2550
Sporodinia, .	*						+		+		0.4				71
Closterium and Cos	anar	lum		+ 1-X		• 3								•	2010
Diatoms (Rhopalod	ıa, C	.000	one	15),	35		•		5		10		•		73
Basidiobolus, .										+		+			76

CHAPTER IV.-FECUNDATION; HETEROGAMETES.

Sphæroplea, .			90						100		*		63	79
Fucaceæ (Fucus,	Halic	lrys)	,	39		30		*		60				. 84
Volvox, .	3-6						1.0		120		25	- 13		88
Œdogonium,		20		5				100		4				. 89
Coleochæte,			*		810		37				(4)		100	91
Vaucheria,	*	6.0		334				*		*		220		. 94
Albugo (Cystopu	s), .				6									96
Achlya and Sape	olegni	a,		0.0				(4)		*11				. 102
CHAPTER V.	_Ty	PE (or	тн	в А	sco	MY	CET	ES	ANI	R	нов	OOP	нусељ.
Sphærotheca,					200				Q.		7		23	801
Pyronema,				$\widetilde{\mathfrak{M}}$		36		9.0		63				111
Batrachospermu	m, .		83		627		196		*		**		90	116-119
Dudresnya,	50							*						119-126
Collema, .	185		10		*		$\widehat{\mathcal{A}}$		*		100			126-128
	Cı	IAP'	reb	V	I.—	AR	сн	EGO	NIA	TES	9			
Pteridophyta,	E			+		90								129
The spermat			3						*		20		60	130-136
The egg-cell	and fe	ecun	dati	on,		:55		50		್ಷ		4		136-142
Gymnosperms,					32		-		٠				50	142
Cycas, Zami										33				142
The ma		neto	phy	te a	nd !	the	dev	elop	me	nt o	f th	e s	pern	na-
tozoid							3		*		100			142-155
The arc		ium,			*			+						156-158
Fecunda	ation,				34									158-163
Pinus,												3.0		163
The ma		fem	ale	gan	ietoj	hyt	es,		*		20		٠	163-164
Fecunda	ation,			٠				•		•		•		165-168
	C	HAI	PTE	R V	VII.	—. <i>E</i>	Lng	losi	ER	MS.				
The embryo-sac,	or fen	nale	gan	neto	phyt	te,	*				100			169-174
The male gamet				36		25		*						174-176
The fusion of ma	de and	egg	-nu	cleu	s,									176-177
The fate of the se	econd	male	e nu	cle	ıs in	the	em	bryo)-sa	C.				177-180
Bibliography,	*		*				÷	80	(4)		*			17.520

INDEX.

																	PAGE.
Abies .					87		8		100				14		477		156
Achlya .		**:				*0		0.00		60		240		0.00		940	102-107
Adiantum .							20		13		20		194		(4)		136
Albugo .												3		200			96-100
Aspidium .			200						- 5		343		774		90		136
Basidiobolus			100					10				2				32	76-78
Batrachosperi	nu	m											17.4				116-119
Callithamnio		9	300	10.0	23	200	350	92	0.5	20	(5)	32	137	200	30	702	119-124
Cell-cleavage		Sv	nch	itri	11177	disc	ine	ns	20	4.11	200		1.5	4.00			36-38
шен ененгиво	77		lobo						100		80	10.0	95	0.00	0.1		38-41
Cell-division	in						****	al C	366	*	200			*			VOT 10817-03
Cen-division .			tyo				-	olo			•				•		31-33
Cell-formation										*7				*			41-43
Centormation	u,	ire	C, 111			nea i							+11				33-35
Centrosome, i		Di.	+		cmi	leat i	scut	enta	CH.	*		*		25		30	35
Centrosome,																	3-7
			sip			. *								*		37	8-10
Centrosome a	nd	15	eph	aro	pla	st	(4)										44-49
Cephalotaxis																	157
Chara .	2		*			40	*	23	350	20	333		32		93		135-136
Chromosome	5 ij							ell (of D	licty	ota					2.5	5-6
			scus										100		120		8-11
		P	olle	n m	oth	er-c	ells		Lili			1.4		+		396	17-31
								1	Pode	oph	llu	m					17-31
									Frad	lescr	anti	n		90		204	17-31
Significat	nce	of	nu	ner	ical	red	uct	ion			+						49-60
Closterium						14-1		134		100		4141		140		100	71
Cocconeis .			*				+		40				- 63				75
Coleochæte																	91-93
Collema .			363				(4)				370		500		100		126-128
Cosmarium				-								32				172	71, 72
Cycas .					10.00						04.0	1.	12-1	40.	156.	157.	163, 166
Cystopus (see	A	lbu	igo)	and the second								23		Sec.	. 90	- 511	
Dasya .			0.7			- 2											124
Diatoms .		170	191			. 10	121	0.5%		- 80	023	0.5%		٠	27.5		73-76
Dictyota		120		1650	-	327	17.1	6050		- 00	3.53						2-6, 26
Dudresnya .		•												•			
Ectocarpus			37.				35		, 17				10		2.5		119-125
Equisetum .						*										9.1	65, 66
Erysiphe .							*						*		*		135
Fucus .																	7-10
			*												7		84-88
Ginkgo .		•												149	155	102,	163, 166
Glæcosiphon	н				+				*				4				124
Gnetum		1				39						6		2.0			168, 173
Gymnogrami	ne								*								130-132
Halidrys										22		50		200		18:1	85
Helleborus											3.			12	158	, 169	-171, 173
Hydrodictyon	ħ.																63-65
																	-11