ELEMENTS OF THE DIFFERENTIAL AND INTEGRAL CALCULUS

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649571291

Elements of the Differential and Integral Calculus by Charles Davies

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

CHARLES DAVIES

ELEMENTS OF THE DIFFERENTIAL AND INTEGRAL CALCULUS

Trieste

ELEMENTS

¥0.

ŧ.

ł

21

٠

ı.

.

0

-

.

54 20

1

ा ्ह

OF THE

÷.

1

DIFFERENTIAL AND INTEGRAL

CALCULUS.

BY CHARLES DAVIES,

AUTHOR OF MENTAL AND PRACTICAL ARITHMETIC, FIRST LESSONS IN ALGEBRA, ELEMENTS OF SURVEYING, ELEMENTS OF DESCRIP-Tive Geometry, Elements of Analytical Geometry, And Shadre Shadows and Perspective.

> SECOND EDITION. REVISED AND CORRECTED.

÷

PHILADELPHIA:

PUBLISHED BY A. S. BARNES AND CO.

25

21 Minor-street.

1840.

Entered according to the Act of Congress, in the year one thousand eight hundred and thirty-six, by CHARLES DAVIES, in the Clerk's Office o' the District Court of the United States, for the Southern District of New Tork. -

20) -

۲

apr6. 1936

Havergent College Library

45 GOLD STREET, NEW YORK

251

PREFACE.

THE Offerential and Integral Calculus is justly considered the most difficult branch of the pure Mathematics.

The methods of investigation are, in general, not as obvious, nor the connection between the reasoning and the results so clear and striking, as in Geometry, or in the elementary branches of analysis.

It has been the intention, however, to render the subject as plain as the nature of it would admit, but still, it cannot be mastered without patient and severe study.

This work is what its title imports, an Elementary Treatise on the Differential and Integral Calculus. It might have been much enlarged, but being intended for a text-book, it was not thought best to extend it beyond its present limits.

PREFACE.

The works of Boucharlat and Lacroix have been freely used, although the general method of arranging the subjects is quite different from that adopted, by either of those distinguished authors

٠

ų,

MILITARY ACADEMY,

52

West Point, October, 1836.

.

4

55

12.45

L

CONTENTS.

1

£

õ

-7

•

ż

CHAPTER I.

Constants and variables,	9
Functions defined,	9
Increasing and decreasing functions,	10
Implicit and explicit functions,	11
Differential coefficient defined,	16
Differential coefficient independent of increment, .	20
Differential Calculus defined,	22
Equal functions have equal differentials,	23
Reverse not true,	23

CHAPTER II.

Algebraic	function	s defined,		¥1.			. •	2:
Different	ial of a fi	unction co	mpose	d of	sever	al tern	ns, .	20
**	" the	product o	f two	funct	tions,	38	•30	27
66	44	- 4	any	numi	ber of	functi	ions,	28
**	" a fi	raction,			2.67		•	29
Decreasi	ng functio	on and its	differ	ential	coeffi	cient,		30
Different	ial of any	power of	a fu	action				30
"	ofar	adical of t	he se	cond	degree	ə, .		31
66	coeffic	cient of a	function	on of	a fun	ction,	•	33
Example	s in the d	lifferentiat	ion of	alge	braic i	unctio	ons,	34
Successiv	ve differe	ntials—se	cond d	liffere	ntial o	oeffic	ient,	39
Taylor's	Theorem	.				•	. 6	43
Different	ial coeffic	ient of the	e sum	of tw	vo.var	iables		43
Developn	nent of th	ne function		(a + 4	r)*,	•	<u> </u>	46
ĩ		second	state	of an	y func	tion,	•	47
Sign of t	he limit e	of a series	, .					47

22

CONTENTS.

6

Cases to which Taylor's Theorem does not apply, .	48
Maclaurin's Theorem,	50
Cases to which Maclaurin's Theorem does not apply,	53
Examples in the development of algebraic functions	54

CHAPTER III.

Transcen	dental fur	nctions-	logarith	mic a	nd c	ircul	ar, .	55
Different	ial of the	function	$u = a^{s}$,				12	55
"	"	logarithm	o of a c	uanti	ty, .	· .	<u> </u>	58
Logarith	nic series	, .				1	. a 1	59
Example	s in the di	fferentiat	ion of h	ogarit	hmic	func	tions,	62
Differenti	ials of con	mplicated	expon	ential	func	tions	·	64
64	" cir	cular fun	ctions,		÷.	8	81	66
44	" the	arc in te	erms of	its fu	incti	ons,		70
Developn	aent of the	functions	of the a	rc in t	erm	ofth	e arc,	73
Develop	nent of th	e arc in t	terms o	f its f	unct	ions.	- 6	75

CHAPTER IV.

Partial differentials and partial differential coeff	icients
defined,	. 79
Development of any function of two variables,	80
Differential of a function of two or more variable	. 82
Examples in the differentiation of functions of the	wo va-
riables,	. 85
Successive differentials of a function of two variations	iables, 86
Differentials of implicit functions,	
Differential equations of curves,	93
Manner of freeing an equation of constants, .	. 96
" the terms of an equation fro	m ex-
ponents,	. 97
Vanishing fractions	98

CHAPTER V.

Maxima and minima defined,		105
General rule for maxima and minima,		108
Examples in maxima and minima,		109
Rule for finding second differential coefficients,		112

CONTENTS.

1

٠

26

Ŧ

N ...

•

.8

CHAPTER VI.

	Expressions for tangents and normals,	116
23	Equations of tangents and normals,	118
	Asymptotes of curves,	122
	Differential of an arc,	125
	" " the area of a segment,	127
	Signification of the differential coefficients,	128
	Singular points defined,	132 .
	Point of inflexion,	133
	Discussion of the equation $y = b \pm c(x - a)^n$, .	134
	Condition for maximum and minimum not given by Tay-	
	lor's Theorem-Cusp's,	139
	Multiple point,	143
4	Conjugate or isolated point,	144

CHAPTER VII.

CHAFTER VII.	
Conditions which determine the tendency of curves to	
coincide,	147
Osculatrix defined,	150
Osculatrix of an even order intersected by the curve, .	152
Differential formula for the radius of 'curvature, .	154
Variation of the curvature at different points,	155
Radius of curvature for lines of the second order, .	156
Involute and evolute curves defined,	158
Normal to the involute is tangent to the evolute, .	160
Difference between two radii of curvature equal to the	
intercepted arc of the evolute,	162
Equation of the evolute,	163
Evolute of the common parabola,	164

CHAPTER VIII.

Transcendental cu	rves de	fined	I-L	ogarit	hmic	curve		166
The cycloid, .	• 0		•	•			•	169
Expressions for the	a tange	nt, n	ormal	, åc.	, to th	e cyc	loid,	171
Evolute of the cyc	loid,							173
Spirals defined,	12. 12.					2.00		175
						1.00		04 -
		114						107

7

8 8 N 1