ELEMENTS OF THE DIFFERENTIAL AND INTEGRAL CALCULUS; PP. 1-281

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649571277

Elements of the Differential and Integral Calculus; pp. 1-281 by Charles Davies

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

CHARLES DAVIES

ELEMENTS OF THE DIFFERENTIAL AND INTEGRAL CALCULUS; PP. 1-281

Trieste

ELEMENTS

OF THE

DIFFERENTIAL AND INTEGRAL

CALCULUS.

BY CHARLES DAVIES, LL. D.,

AUTHOR OF ARITHMETIC, ELEMENTARY ALGEDRA, ELEMENTARY GEOMETR* RIEMENTS OF SURVEYING, ELEMENTS OF DESCRIPTIVE GEOME-TRY, NLUMENTS OF ANALYTICAL GEOMETRY, AND SHADES SHADOWS, AND PRESENCTIVE.

IMPROVED EDITION.

NEW YORK: published by A. S. Barnes & CO. No. 51 John Street. 1852.

Entered according to the Act of Congress, in the year one thousand eight hundred and thirty-six, by CHARLES DAVERS, in the Clerk's Office of the District Court of the United States, for the Southern District of Now York.

PREFACE.

THE Differential and Integral Calculus is justly considered the most difficult branch of the pure Mathematics.

The methods of investigation are, in general, not as obvious nor the connection between the reasoning and the results so clear and striking, as in Geometry, or in the elementary branches of analysis.

It has been the intention, however, to render the subject as plain as the nature of it would admit, but still, it cannot be mastered without patient and severe study.

This work is what its title imports, an Elementary . Treatise on the Differential and Integral Calculus. It might have been much enlarged, but being intended for a text-book, it was not thought best to extend it beyond its present limits.

PREFACE.

The works of Boucharlat and Lacroix have been freely used, although the general method of arranging the subjects is quite different from that adopted by either of those distinguished authors.

The present is a corrected, and it is hoped an improved edition. The first chapter has been entirely re-written, and some of the other parts of the work have been considerably altered.

WEST POINT, March, 1843.

4

CONTENTS.

CHAPTER I.

		UHA	LIF	1. 1.				
								Paga
Constants	s and variable	es, .			٠			. 9
Functions	s defined, .		S.,	3 3		÷	18	9
Increasio	g and decrea	sing fu	nction	ıs,	- 92°	- R		10
Implicit a	and explicit fi	metion	з,		14	÷		11
	al coefficient			-		.		16
Differenti	al coefficient	indepe	endent	of in	acrem	ent,		20
Differenti	al Calculus d	lefined,	6 6	33		83		22
Equal for	octions have a	equal d	iffere	ntials,				23
Reverse		÷	:	- 19		•		23
		CHAI	PTEI	я п.				
	functions de			ж.	84		•	25
Differenti	al of a functi	on con	opose	l of s	evera	l tern	ns, .	26
**	" the pro						÷3	27
**		·6	any	numb	er of :	functi	ons,	28
**	" a fractic	on,		¥2	9 9	ж		29
Decreasia	ng function as	nd its d	liffere	ntial	coeffic	cient,		30
Differenti	al of any po-	wer of	a fun	ction,	÷.	*	80	30
"	of a radic:							31
**	coefficient	of a fi	unctio	n of a	a func	tion,	łs:	33
Examples	s in the differ	entiatio	on of	algeb	raie f	unctio	ons,	34
	ve differential							39
Taylor's	Theorem, .			3.		•		43
Differenti	al coefficient	of the	sum	of tw	o vari	ables	,	43

Development of the	function a	4 = {a	+x)°,		20 - 23	46
и.	second st	ate of	any	funct	ion,		47
Sign of the limit of	a series,			•	٠		47

CONTENTS.

and the service of the	1222		-		23		Page.
Cases to which Taylor's	Theo	prem (loes r	tot ap	ply,	•	48
Maclaurin's Theorem,			35		•	33	50
Cases to which Maclauri	in's T	heore	m do	es not	apply	y.,	53
Examples in the develop	ment	of alg	gebrai	e fune	ctions		54

CHAPTER III.

Transcer	dental functio	ons—logar	ithmic	and	circul	ar,		55
Different	ial of the fun	ction $u \equiv a$	<i>r</i> ",	- in - i	×			55
14	4 log	arithm of a	a quan	tity, .				58
Logarith	nic series,					÷		59
Example	s in the differ	entiation of	f logar	ithmi	e fune	tion	в,	62
Different	als of compli	cated expe	onenti	al fun	ctions	s, .		64
24	" circula	r functions	š, .					66
66	" the are	in terms	of its	funct	ions,	•		70
Developn	ent of the fun	ctions of th	e arc ii	a term	s of 1]	iear	с,	73
Develop	nent of the ar	c in terms	of its	func	tions,		2	75

CHAPTER IV.

CITER FILE * **	
Partial differentials and partial differential coefficients defined.	79
경험 승규는 전문가 있는 것을 얻었어. 전문가 전문가 물건하는 것이 없다.	1.1
Development of any function of two variables,	80
Differential of a function of two or more variables, .	82
Examples in the differentiation of functions of two va-	
ríables,	85
Successive differentials of a function of two variables,	86
Differentials of implicit functions,	89
Differential equations of curves,	93
Manner of freeing an equation of constants, .	96
" " the terms of an equation from ex-	
ponents,	97
Vanishing fractions,	98

CHAPTER V.

Maxima and minima defined,		S.	105
General rule for maxima and minima,	8		108
Examples in maxima and minima,		1	109
Rule for finding second differential coefficients,			112

6

CONTENTS.

CHAPTER VI.

Expressions for tangents and normals,	1	÷		Page. 116
Equations of tangents and normals, .		2	24	118
Asymptotes of curves,	3		23	122
Differential of an arc,		•	3	125
" " the area of a segment,	3	38	÷3.	127
Signification of the differential coefficient	nts,	83	88	128
Singular points defined,	э.	8	*	132
Point of inflexion,	*	÷		133
Discussion of the equation $y = b \pm c \langle x \rangle$	$(-a)^{n}$,	÷S	134
Condition for maximum and minimum not	t give	n by '	Tay-	
lor's Theorem-Cusp's,	i.	30	6 2	139
Multiple point,				143
Conjugate or isolated point,	et		. :	144

CHAPTER VII.

Conditions which determine the tendency of curves to	
coincide,	147
Osculatrix defined,	150
Osculatrix of an even order intersected by the curve, .	152
Differential formula for the radius of curvature, .	154
Variation of the curvature at different points,	155
Radius of curvature for lines of the second order, .	156
Involute and evolute curves defined,	158
Normal to the involute is tangent to the evolute, .	160
Difference between two radii of curvature equal to the	
intercepted arc of the evolute,	162
Equation of the evolute,	163
Evolute of the common parabola,	164

CHAPTER VIII.

Transcendental cu	rves d	lefine	d-L	ogari	thmic	CUTY	е, .	166
The cycloid, .	¥3	à	2		×		÷	169
Expressions for th	e tang	ent,	norma	1, &	., to th	he cyc	cloid,	171
Evolute of the cyc	cloid,	8.80	۰.	2.0		÷.		173
Spirals defined,			6	- 35			- 29	175

7