PLANE AND SPHERICAL TRIGONOMETRY AND MENSURATION

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649672271

Plane and Spherical Trigonometry and Mensuration by A. Schuyler

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

A. SCHUYLER

PLANE AND SPHERICAL TRIGONOMETRY AND MENSURATION

PLANE AND SPHERICAL

TRIGONOMETRY

AND

MENSURATION.

BY

A. SCHUYLER, LL. D.,

Professor of Mathematics and Philosophy in Kansas Wesleyan University; Author of Principles of Logic, Empirical and Rational Psychology and of a Series of Mathematical Works.

NEW-YORK & CINCINNATI & CHICAGO AMERICAN BOOK COMPANY Educt : 1. 90 115

By exchange from OBERLIN COLLEGE LIBRARY

COPYRIGHT

1875

BY WILSON, HINKLE & Co.

E-P 15

PREFACE.

THE following treatise on Plane and Spherical Trigonometry and Mensuration first appeared in 1873 as an Introduction to the author's work on Surveying and Navigation.

The general favor with which the Trigonometry has been received renders it probable that its publication in a separate volume would greatly extend its usefulness.

The many studying Trigonometry, who do not care to learn Surveying, ought not to be compelled to purchase a more expensive book than is necessary.

In the application of Logarithms to the processes of Multiplication and Division, Involution and Evolution, the order of treatment is, first, the proposition and its demonstration; next, the rule, then the solution of examples, thus giving the application of the principle in immediate connection with its statement.

The trigonometrical functions are defined, not as ratios, but as linear functions of the angle, thus giving the student clear geometrical conceptions instead of abstract relations, and enabling him the more readily to grasp the laws of the algebraic signs of the functions. The advantages in analytic investigations resulting from defining these functions as ratios have been secured in the principles relating to the Right Triangle, Art. 64.

Each of the circular functions has, in the first place, been considered by itself, and its value traced for all arcs, from 0° to 360°.

Trigonometry is naturally divided into Plane and Spherical. In Plane Trigonometry triangles are discussed in the order, Right Triangles and Oblique Triangles.

Then, under the general head, Relations of the Circular Func-

tions, follow, fundamental formulas, each function in terms of each of the others, functions of negative arcs, functions of $(n \ 90^{\circ} \mp a)$, values of functions of particular arcs, inverse functions, functions of the sum and difference of two angles, functions of double and half angles, consequences of the formulas (a), (b), (c), (d), a variety of interesting practical applications, and the computation of the natural and logarithmic functions.

In Spherical Trigonometry, as in Plane, Right Triangles are first discussed, then Oblique.

More than ordinary care has been given to the development of Napier's principles and to the discussion of the species of the parts of both right and oblique triangles, Arts. 126, 129, 145, 148, 151.

Special attention is invited to Arts. 64, 89, 91, 126, 129, 145, 148.

Mensuration, a subject at once interesting and practically important, has been discussed at length, and formulas, instead of rules, have been developed for the solution of problems.

Hoping that the work, as a whole, will prove a contribution to the wants of the student, and render him efficient aid in acquiring a correct mathematical taste, and that its publication in a separate volume will greatly extend its usefulness, it is submitted to the favorable consideration of those who have the responsibility of selecting the text-book on this important branch of mathematical science.

A. SCHUYLER.

BALDWIN UNIVERSITY, Berea, O., June 12, 1875.

CONTENTS.

·								3	PAGE
Introduction		-	٠		3	•		*	9
700 Dillos	•			•					9
			•				•		9
Laws of the characteristic.				•					10
Exercises on the characteri			•	٠	•	•			11
Description of the table of	log	arith	ms,		2.0	1.7	9.50		12
To find the logarithm of a	nun	iber.	*1		22	33	5.00		13
To find the number corresp	ond	ing to	a log	aritl	ını.			0.5	16
Multiplication by logarithu	18.	93	*0	0.					18
Division by logarithms.		946	•3	•					19
Arithmetical complement,	•	135		*	(4)		0.4		20
Involution by logarithms.		\$17	(12	9	334		21
Evolution by logarithms.		1	•	٠	Ç	3	:		22
TRIGONOMETRY		100	*0	æ					23
PLANE TRIGONOMETRY.		72.0	46						23
Prigonometrical functions.	1		2			٠	6		27
The sine of an arc	•	92		è.			9	7%	29
The co-sine of an arc									30
The versed-sine of an arc.	: : : : : : : : : : : : : : : : : : :	8.50	•	*00			3*	1.9	32
The co-versed-sine of an arc		33.		*1	*	9.0		50 0	33
The tangent of an arc.		GS-	00.00	•	90	*	3.0	2.0	34
The co-tangent of an arc.					3.0		*	::- ::-	35
The secant of an arc	3	42.0		***	100	(1)		100	37
The co-secant of an arc.	62	8.8	58	- 60	20			330	38
Signs of the circular function	ns.		288	85	-			82	40
Limiting values of the circu			tions.	-	25		16	74	40
Natural functions.				200	8	. 3	30	322	41
TRICIAL IGHESIONS. 4	i.		0.0			•	(v)	99	-

vi _				CON	TEN	TS.						
Logarithmic	func	tions	No.	•			94			¥0:		PAGE 43
Right Triang				(2)		59				26	2	47
Case I.		8.8	80	25		8		93	836	20		51
Case II							32	9	•	23		52
Case III.		26	21			87				27		53
Case IV.										30		54
Oblique Tria	ngles.	-Cas	e I.			:2 :	-00 15	110 11 2	80571 80 5 78	500. \$65	•	55
Саяе II.			::::::::::::::::::::::::::::::::::::::	*0	•	**	25 25	er.	200	0.00	•	58
Case III.		18 . 00	• 2				7.0 7.0	2	0.00	100		64
Case IV.				***			*	3000	X • Z	6 0		67
Heights and	Dista	nces.		**	*	*				***		69
Problems.	3		¥8:	*1			·					70
Fundamenta	l for	mulas					3	89				72
Each function	on in	term	s of t	he ot	hers.		84		9.0	¥3):		76
Functions of	f neg	ative	ares.		÷:	Ç.	0	50	94W.	20		78
Functions o	f (n !	90°∓	a).			•	8	0	•	8	20	78
Values of fu	netic	ons o	f part	icula	r arc	28.			8350 83 5 00			80
Inverse trige	mon	etric	funct	ions.				200	2000	100	*	81
Sine and co-	sine	of the	e aum	of to	vo ar	gles.		E2	00.00			83
Sine and co	-sine	of th	e diff	erenc	e of	two a	ingle	в.	(T. 0.2)	- C	*	85
Tangent and	co-t	anger	t of	the st	ım o	r diffe	erene	е.	0000	6 13	*	86
Functions of								•		3 55		88
Consequence							84	∰.	2008	400		90
Applications										215	20	92
Miscellaneou		rercie	es.		•					•		106
Computation	of f	uncti	ons.		*	: T	12			- 6	8	107
SPHERICAL '										7:1		108
Right Triang					r par	ts.	æ	204			*3	109
Napier's pri				¥5				39	8) * 87	•	*	110
Maudnit's p	-			¥35			ii.			**	•	112
Analogies of	- 2	-		erical	tria	ngles.		100		100	٠	113
Species of the						3	:	17	0.00	66		114
Remarks.	0000 0 12	•::	501				22			2 00		119
Polar triang	les.	351 (5)•68	10	10 •e				iù.		23		122
Quadrantal		gles.	***	*0		0.5 0.5				*0	- 7	123
Oblique Trias			positi	on I.					*	•		124
Proposition							X.			•		125

			COL	VTEN	TS.					74
Propositions	III and l	v.	1000	50 - 01		*		2.	2.0	. 1
Propositions	V and V	I.		•••	•00	*1				. 1
Proposition \	VII	119		43	*			•		. 1
Propositions	VIII and	IX.		85		143			29.0	. 1
Napier's anal	ogies.	÷.,	900	40	. <u>.</u> .			3		. 1
Values of h s	s b incres	ases fr	om	0° to	360°.			12		. 1
Case I				20	25			3		. 1
Values of P	as B incr	еввея	fron	a 0° t	o 360	٥.				. 1
Case II.		0. *	٠	•				6.0		. 1
Principles.	38 08			.00	25		25			. 1
Case III.		•		*0	(*)	(*)	3	9.		. 1
Cases IV and	v		•		*8	93		2.0		. 1
Case VI.	(¥)	€	÷:	*3	Æ	٠	•	Ü	•	. 1
MENSURAT	rion.	11.00		*0		,	:*		33*31	. 1
MENSURATIO	N OF SUR	FACES		* 0	*		2.0	5.0	2002	. 1
Area of a rec	ctangle.	10.00	•	*0	*	*		3.0	93400	-
Area of a pa	rallelogra	ım.	•	•	*	*	2	33	0000	. 1
Area of a tri	angle.			\$6		3.		86	5543	. 1
Area of a qu	adrilaten	al.		200				334	::0	. 1
Area of an in	regular p	olygo	n.			-			-	. 1
Area of a rep	gular pol	gon.		- 6	93		•	•	•	. 1
Formulas for	the circl	e.								. 1
Area of a sec	tor of a	circle.			*0					. 1
Area of a seg	ment of	a cire	le.	5.5			36	7.0	8.02	. 1
Area of an e	llipse.	19		•3	•	*	90	8.		. 1
Area of a reg	galar pris	sm.	(4)	83	•			84		. 1
Area of a reg	gular pyr	smid.	•	400		(2)			0.0	. 1
Area of a fru	stum of	a regu	lar	pyran	nid.	3.5	30			. 1
Area of a cyl	inder.			¥.	-			0.0		. 1
Area of a con	ne	97				•		3		. 1
Area of a fru	istum of	a cone				•				. 1
Area of a spi	here	3.53	:0	3 3				82		. 1
Area of a zor	1000	•		*6	*				100	. 1
Area of a sp				•00	*0	*			37	. 1
Area of a sp				•	**	•	•	$\left\{ \mathbf{c}_{i}^{(i)}\right\}$	29	. 1
Area of a reg	gular poly	hedro	n.		•33		841		9.6	. 1

*****S