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PREFACE.,

In ecompiling this work T have freely deawn on all best
known books of such authorities as Appell, Routh, Loney,
Boussse and many others. My object is to present the
matter in an elementary form and to make it immediately
intelligible to a reader possessing but a limited knowledge of
mathematics. For this reason it was thought necessary to
explain things, already almost evident; eonstantly to refer
buck to elementary books on mechanies, ete.; and to devote
the whole first chapter to elements, which are no doubt
already familiar to the average reader, but which he may
find presented in a somewhat different form from that in
which he has them fixed in his mind.

Lagrange's method ia like a slide ryle: it has its limitations,
yet, n many problems it enables ua to write down the differ-
ential equations of motion almoest instantly,

The wonderful beasuty and power of this method will un-
doubtedly appeal to the reader, engineer or student, and
make him Kke the whole subject of dypamics, although his
teachers may have completely failed even to tnierest him in it,
as often is the case, beyond the painful necessity of memorizing
a few distorted notions.

However the primary object of the book i3 to be used in
everyday practice; the writer, being but an average engineer,
uses this method to great advantage in working out various
problems of construction, ete.  'Why not suppose that others
might likewise derive some benefit from this brief exposition
of its principles? Those who want to know more are referred
to Appell, Mécanique Rationnelle, Vol. II, and Routh, Dy-
namics of Rigid Bodies, Vols. I and II.

My thanks are due to Dr, Eric Doolittle, Director of the
Flower Astronomicel Observatory, for reading the M3S. and

making many valuable suggestions.
N. W. A
PHILADRLPHLA,
December 5, 1916.
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CHAFTER L
Brier SyNopsis of CERTAIN PRINCIPLES oF DDyNamics.

1. Constraints. By constraintsspecial conditions are meant,
limiting the motion of a particle in a certain manner, pre-
seribed beforehand. For instance a particle may be free to
move only along a certain curve (a small ring sliding on &
curved wire, a car on the track, ete.); or, again, the particle
may be compelled to remain, at all times, in contact with a
certain surface (for instance if connected by means of a rod
to a fixed point, about which it can, therefore, move on a
sphere). Very often, the particle can move only on the
exterior of a certain surface (imagine, for instance, a small
particle sliding off a circular log, a well-known problem);
or the distance between a particle and a certain fizved point
may be prescribed to be equal to or less than a certain value
{case of a stone on a siring). All these are typical instances

" of constrained motion.

Analytieally, the constraints are specified by geometrie
equations. For instance, the surface on which the particlé
is compelled to remain is usually given by some such equation
as f(z, g, 2) = 0; the curve, along which the particle can
slide, would be given as the intersection of two surfnces such
as f(z, y, z) = 0, and F(z, y, z) = 0.

It is of the utmest importance to note that the constraints
may be either permanent or movable; that is, changing their
position or even their shape. Consider, for instance, the
motion of a particle constrained to move in a plene which
itself iz rotating, say, about a vertical axis with o certain
angular velocity; or, the motion of a small particle of dust
upon a soap bubble while it is being inflated. Conditions of
this sort are characterized by the fact that the equations of
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2 Lacrawae's EqQuaTions,

constraints contain the fime; that is, the equation of a surface
would then be f(z, y, 5, 1) = 0; and the constraining curve
would be given by such equations as f{x, y, 2, 1) = 0; and
F(z, y, 3, t) = 0; so that the derivative with respect to time
would then not equal 0. If it is 0, this means that the con-
straints are permanent, or independent of time.

In the absence of constraining conditions the motion of a
particle is termed free.

2. Virtual work., The fundamenial conception of virtual
work and virtual velocity is known from elementary treatises
{Bowser, Anal. Mech., p. 166). By virtual displacement
we shall understand a very small displacement of a particle,
conceived or imagined by us to take place in any direction
whatsoever; it may or may not coineide with the displace-
ment actually taking place under the aciion of the given foreea
and other conditions; the latter is called actual displacement.
In case of constrained motion, certain displacements, called
eompolible or consistent with the constraints, ean be con-
ceived. For instance, in the case of a constraining curve the
only compatible displacement would be either backward or
forward, from some initial position, along the curve; in the
case of a constraining surface, compatible displacements of a
particle can be imagined to take place in a great variety of
manners, but always subject to the initial condition, viz.,
adhesion to the surface. Other displacements eannot even
be conceived without calling into play the idea of distorting
the congtraints; they are called inconsisfent with the con-
straints and will not here be considered; while under free or
unconstrained motion the virtual displacements may be any.

For the sake of clearnesa let us write down the few funda-
mental principles and definitions established so far: (a) By
virtual work of a force is meant the product of the virtual
displacement of its point of application into the projection
of the force upon the direction of the displacement, in other
words the virtual work = P:8p-cos (P, 8p); () The virtual
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work of a force for any displacement is equal to the sum of
virtual works done by its components; in other words,

R-8s-cos (R, 88) = ZP:ép-cos (P, 8p);

(¢) For concurring forces the sum of virtual works done by
the forces equals the virtual work done by their resultant;
from this is derived the very important form in which virtual
work 18 given in rectangular coordinates {x, y, z). Supposing
that there is a force P referred to rectangular axes z, y, z
and that the projections of the force upon these axes are (say)
Xy, Yo and Z;. Let the viriual displacement of the force
be &p, of which the projections upon the axes will be &z,
by, fz. Now in view of what has just been said, the virtual
work of the force must egual the sum of virtual works of its
components; that is,

P-op-cos (P, 3p) = Xobz -+ Yoby -+ Zal;

we will represent this simply by &W; (d) From (¢) it also
follows that when any number of concurring forces are in
equilibrium the sum of their virtual works is = 0. () To
the above the following principle should be added: In case of
rotation the virtual work is the product of the moment of the
force about the axiz of rotation by the angular (virtusl)
displacement.

All of this refers to free motion. So far as constrained
motion is concerned the following remarks may be made:
If the motion of & particle is constrained, this of course means
that at any fime the coordinates of the particle must satisfy
the constreining equation

.fExr ¥z =10 or, _f(.‘l!, hat) =10, (1)

otherwise the particle would not remain on the constraining
curve or surface; and if a small virtual displacement, of which
the projections upon the axes are &z, 8y, 8z, be given to the
particle, compatible with the constraints, then the new posi-



