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Laoravon's GEverarrzen Equatroxs or Morron.
LagraNnge's CavoNicar EQUATIONS.

Let F),, F,, Fyy, -+, F), be the forces acting on a unit of

mass m, ,
Fy, FF, FF, ... F, be the forces acting on & unit
of mass m,,
ote. oke.

Let 8p,,, 8p,,, 8pys -+ +» 5p,, be the virtual velocities of m,,
aPu' BPﬂ'l BP:! L &hhmw “l"m.tiefofm:l

ole. oo

Now assume that each masa m, be displaced an infinitesimal dis-
tance ! = da, in the direction in which the mass m, would have
moved during the next instant had it not been subjected to this
arbitrary displacement, and let the distance in each case be pre.
cisely equal to the distance which the body would bave moved dur.
ing the next instant had it not been subjected to displacement.
Then by the theorem in virtual velocities that 3= F8p == 5¢ = change
in the living force, we shall have for the masses m, .. m,,

i’i”'mpual’u-sfp for m,,
1 . .
X m Fudp, m 8T ok iy
1
l “N ) L]
@ M= i LR T m Fabp.
]
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These equations involve the masses because &, are forces om
unit masa,

Now it is known that the change in the living force of a system
is equal to the work done on the system and aince work equals foree
% distance, we shall get for the change in the living force

R
(E-) =i Fmiﬁ&e,
Equating these two values of §T), we get,
L " s,
® R {rEmFp—m e | =0
1 1

which is Lagrange's Generalized Equation,

If pow we suppose the forces to be resolved along the three
coordinate axes the above equation ean be easily made to assume
the form.

@ Z(X-n)wt Z(r-ngl)ws
z(z_m%f)su-ﬁ

where X, ¥, Z are the total components of the forces along the
goordinate axes,
Let us assume a certain function &7 (Potential Funetion} which
is independent of the time ¢, such that
T 2u o7
E-x, W_ F,. E—Z,

then by substitution equation (2) becomes
E(%&+ ...m.)_}:(m%fh+ a'hu)

Now the left hand member of this equation is the total varia-
tion of &7, or 617,
Since 7 (Living Foroe) = } m»*, 67 = mudy, bat
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1
m ot m D a,
d'x d
" —aftiam—mm&n+ by — 8T
nOwW

d a a d
Z3(moda) = m 51 o b v 3 () = m 3 B 4 v,
for

d d,
mggtﬁw}-mﬁ(a‘i)-m&.
I d
o
mﬁ;&sa(nwsw]——ﬂi'
..z(»:%fa.;...ram,)ng(m)_az,

- d
(8) 5U =, (mube) — 87

Let us suppose 7' to ba a funotion of the independent variables
Tis Tan .Gt&.thﬁnthamﬁaﬁnnof Tia

ar

ET-E'-EI sq1+...gtg_’
ety

50’-69-_-' &, + - - - ete.,

ds

8p = & +ogto,
Jg, ¥

These values substituted in (3) give the sguation

(%‘?39:4"--m-)—%(mv[%sﬁq....at&])

(s o)



and gince the ¢’s are independent we can equate the like variations
and obtain the following partial differential equations :—

au J('a.) a7

2, = &\ 2,) " %

ste. oto.  ete.
which become

o gl
) o, e o

ote. ote.  eto.
Since

ds ds dg  Os dy Oz
Uud—thza—glgg-+a a—gI,:aE.
But }mv'—T, therefore
4 ag, g,

These equations are known as Lagrange’s Canonical Forms, and
in deriving them we have assumed that all points of the system
have been expressed in terms of ¢, and % independent variables
¢, ++ 4, DBince there are Bn codrdinates altogether in the system,
(=, ¥, 24+ -+ %, %, 2, ) this assumes that there are (32 — k) equa-
tions of condition.

IL
CawonicaL Forms or Hawirrow.

Let us still regard T as expressed in terms of ¢, .-, g,,
Gis * 5 Gy And write

or T
B aq{ 1 M ag; v 1 .
T waa originally a homogeneous function in regard to

du,
& @
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