# THE ELEMENTS OF GRAPHIC STATICS, TRANSLATED FROM THE GERMAN

Published @ 2017 Trieste Publishing Pty Ltd

#### ISBN 9780649523252

The Elements of Graphic Statics, Translated from the German by Karl Von Ott & Sir George Sydenham Clarke

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

## THE ELEMENTS OF GRAPHIC STATICS, TRANSLATED FROM THE GERMAN



### THE ELEMENTS

OF

## GRAPHIC STATICS

### By KARL VON OTT

PROPERSON AV DER K. K. DEUTSCHEN OBERREALSCROUN UND H. DOCKET FÜR BAU-MECHANIK AM K. LAVDES-FOLKTSCHNIKUM IN PRAG

#### TRANSLATED FROM THE GERMAN

BT

#### SIR GEORGE SYDENHAM CLARKE, K.C.M.G.

COLONIL BOYAL ENGINEERS, Ret. AUTHOR OF 'PRACTICAL GROWETRY AND ENGINEERING DRAWING'

NEW IMPRESSION



London

E. & F. N. SPON, LATO., 57 HAYMARKET

Bew Bork

SPON & CHAMBERLAIN, 128 LIBERTY STREET

1905

#### TRANSLATOR'S PREFACE

THE solution of problems of all kinds by purely graphic methods forms an important branch of study in the training of a Continental Engineer, and the publication of such considerable works as those of Reuleaux, Culmann, Bauschinger, and Levy, affords the best proof of the value attached to the subject.

In England, notwithstanding the valuable contributions to Graphic Statics made by Professor Clerk-Maxwell and the late Professor Rankine, the subject can hardly be said to have received the recognition it merits. It is true indeed that the power and facility conferred by certain isolated processes, such for instance as that of stress diagrams, are universally acknowledged; but these processes have for the most part been viewed as mere artifices for effecting special purposes, and not as applications of the principles of an important general method.

The present work, which has in Germany already gone through three editions, is for its size one of the most complete elementary treatises on the subject, while its essentially practical character and the extreme simplicity of the mathematics involved will, it is hoped, render it widely useful in an English form.

In carrying out the translation the Author's text

has, as far as possible, been adhered to; but the peculiarities of German idiom cannot always be literally rendered, and in such cases a certain amount of freedom must necessarily be claimed.

It was thought advisable to omit entirely the first portion of the work treating of Graphic Arithmetic, which, though it certainly forms a useful and appropriate introduction to the study of Graphic procedure, has not been much used in practice.

Some few notes have been added where further explanation seemed desirable, or where, as in the case of the treatment of wind pressure on roofs, a divergence from English practice seemed to call for some remark. All such additional matter incorporated with the Author's text has been enclosed in brackets.

COOPERS HILL, June, 1876.

## CONTENTS.

## PART I.

|         | COMPOSITION OF FORCE                                             | ES.  |       |      |      |      |
|---------|------------------------------------------------------------------|------|-------|------|------|------|
| PARA    |                                                                  |      |       |      |      | PARL |
| 1.      | Forces acting in the same Straight Line                          |      |       |      |      | 2    |
| 2.      | Forces acting in any Directions at a Point                       |      |       |      |      | 2    |
| 8.      | Forces acting on a Rigid Body                                    |      |       |      |      | 4    |
| 4.      | Equilibrium of the Forces acting on a Join                       | ted  | Fran  | 00   |      | 6    |
| 5.      | Parallel Exterior Forces                                         |      |       |      |      | 9    |
|         |                                                                  | +    |       |      |      |      |
|         | THE SIMPLE BRAM.                                                 |      |       | *    |      |      |
| 6.      | Determination of Transverse Forces                               |      | ••    |      | ••   | - 11 |
| 7.      | Determination of Bending Moments                                 |      | ***   |      | •••  | 12   |
| 8.      | Effect of a Travelling Load                                      |      |       | ••   |      | 14   |
| 9.      | Treatment of Travelling Load. Example                            |      |       |      |      | 17   |
| 10.     | Approximate determination of Maxima Mor                          |      | ts    |      |      | 22   |
| 21.     | 마스크 경우를 맞지 않는데 가장 보이었다. 보이라고 하는데 그리는데 얼마를 보는데 하는데 하는데 살아 있다. 그리다 |      |       |      |      | 23   |
| 12.     | Uniformly distributed dead Load                                  |      |       |      |      | 24   |
| 18.     | Reduction of concentrated Loads to a unifor                      | rm ! | Load  | bg   |      | 27   |
| 14.     | Example                                                          |      | 0227  |      |      | 29   |
| 15.     | Combined effect of permanent and accident                        |      | oadi  | ng   |      | 81   |
| 7.7.50A | RESOLUTION OF FORCE                                              |      |       | •    | 255  |      |
| 22      |                                                                  | -20  |       |      |      | 27   |
| 16.     | Resolution of a Force in two directions                          | **   |       | **   | **   | 88   |
| 17.     | Resolution of a Force in three directions                        | **   | ••    | **   | **   | 84   |
|         | INTERIOR FORCES OR STR                                           | ESS  | ES.   |      |      |      |
| 18.     | Calculation of the interior Forces due to th                     | e ex | terio | r Fo | roes | 85   |

## PART II.

|     |                    | BRACI         | ED 8   | TRU   | JOT      | URE   | 8.   |      |       |     |            |
|-----|--------------------|---------------|--------|-------|----------|-------|------|------|-------|-----|------------|
| PAR |                    |               |        |       | in Tools |       |      |      |       |     | PAGE       |
| 19. | General conside    |               | ••     | ***   |          | **    |      |      |       |     | 36         |
| 20. | Equilibrium of     | Forces !      | n a b  | race  | d St     | ruoti | ire  |      | **    | ••  | 88         |
| 21. | Roof Trusses       |               |        |       |          |       |      |      | ••    |     | 40         |
| 22, | Dead Weight o      |               |        | ••    |          |       |      |      |       |     | 40         |
| 23. | Snow Pressure      |               |        |       |          |       | .,   |      |       |     | 41         |
| 24. | Wind Pressure      |               | **     |       |          |       | -1   |      |       |     | 42         |
| 25. | Note on treatme    | nt of W       | ind I  | ress  | ure      | ••    | **   |      | ••    | ••  | 44         |
|     |                    | STRE          | 188    | DLA   | GB/      | MS    |      |      |       |     |            |
| 26. | German Truss       |               |        | ••    | ••       | **    |      | ••   |       |     | 47         |
| 27. | English Truss      |               | ••     | **    |          |       |      |      |       |     | 48         |
| 28. | Belgian, or Free   | nch Tru       | 86     |       |          |       |      |      |       |     | 49         |
| 29. | Bowstring Roof     |               |        | **    |          |       | **   |      | ***   | *** | 50         |
| 80. | Simple Truss       |               | **     | **    |          |       | ••   | ••   |       |     | <b>t/2</b> |
| 31. | Simple inverted    | Truss         | ***    |       | 3800     | **    |      | **   | **    | ••  | 53         |
| 32. | Queez-post Tru     |               |        | **    |          |       | ••   |      | **    |     | 54         |
| 33, | Inverted Queen     |               | IP8    |       |          | **    |      | ••   | **    |     | 54         |
| 34. | Simple Cantiley    |               | **     |       | **       |       | **   |      |       |     | 55         |
| 85. | Braced Cantiley    |               | **     |       | **       |       | **   |      | **    |     | 55         |
| 36, | "Perron" Roof      | 2 2 2 2 2 2 2 |        |       |          | **    |      |      | **    |     | 56         |
| 87, | Lattice Cantiler   |               |        | **    |          | ••    |      |      |       |     | 57         |
| 38, | Braced Beam of     |               | forn   | 1     | **       |       | **   | 300  | **    | **  | 58         |
| 39. | Combined brace     |               |        |       |          |       |      |      |       |     | 59         |
| 40. | Braced Beam wi     |               |        |       |          | ••    |      |      |       |     | 60         |
| 41. | Combined brace     | d Beam        | with   | pare  | liei     | Boor  | ne.  |      |       |     | 62         |
| 42. | Braced Beam wi     | th para       | Hel B  | oom   | s and    | wit   | hout | Ver  | tical | 8   | 68         |
|     | BRACED BI          | EAMB          | WIT    | T     | RAV      | EL    | LIN  | G L  | DAI   | 8.  |            |
| 48. | Effect of travelli | ng Lose       | on t   | race  | d St     | regte | ires |      | •     |     | 65         |
| 44. | Maximum Stress     | of Boo        | me     |       |          | 1.    |      | ••   |       |     | 65         |
| 45. | Maximum Stress     | s of brac     | ing l  | Barn  | **       |       |      |      | **    |     | 68         |
| 46. | Girders with par   | rallel Bo     | 8mo    |       |          |       |      |      |       |     | 70         |
| 47. | Braced Girders     | for Rail      | way I  | Bridg | rea.     | Gen   | eral | Case |       |     | 72         |
| 48. | Crossed, or redu   | ndant I       | ingo   | mla   |          |       |      | .,   |       |     | 79         |
| 49. | Special Cases      |               |        |       |          |       | **   |      | ••    | ••  | 80         |
| 50. | Fixed Load in p    | lace of       | trave. | ling  | Los      | d     |      | ••   |       |     | 81         |
| 51. | Concentrated Lo    |               |        |       |          |       |      |      |       | ••  | 88         |

| CON | TEI | TS |
|-----|-----|----|
|     |     |    |

vii

|   |     | THE ARCH.                                               |          |
|---|-----|---------------------------------------------------------|----------|
|   | 52. | Construction of the Line of Resistance of an Arch       | 84<br>84 |
|   |     | PART III.                                               |          |
|   |     |                                                         |          |
| ં |     | ELEMENTS OF THE THEORY OF STRENGTH OF<br>MATERIALS.     |          |
|   | 53. | Strength of a Prismatio Bar                             | 98       |
|   | 54. | Resistance to Bending. General considerations           | 97       |
|   | 55. | Determination of Stresses at any Cross Section          | 99       |
|   | 56. | Practical Application                                   | 104      |
|   | 57. | Determination of the Moment of Resistance               | 105      |
|   | 58. | Centre of Gravity and Moment of Inertia of a Plane Area | 109      |
|   | 59. | Moments of Inertia of simple Sections                   | 112      |
|   | 60. | Examples. Resistance to Flexure                         | 114      |
|   |     | Desiglation to Originality Property                     | 210      |

55

:47

£9

1/2 1-4 1/5