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PREFACE.

HE object of the following treatise is to present sim-
ply and concisely the fundamental problems of the
Caleulus, their solution, and mere common applications.
Sinee variablea are ita characteristie quantities, the
first fundamental problem of the Calounlus is, To find the
ratio of the rates of change of related variables. To ena-
ble the learner most clearly to comprehend sais. problem,
the author has employed the conception of rates, which
affords finite differentials and the simplest demonstration
of many prineiples. The problem of Differentiation hav-

ing been clearly presented, s general method of its solu-

tion is obtained by the use of limits. This order of
development avoids the use of the indeterminate form g,
and secures all the advantages of the differential nota-
-tion. Many principles are proved, both by the method
of rates and that of limits, and thus each is made to
throw light upon the other.

In a final chapter, the method of infinitesimals ia briefly
presented ; its underlying principles having been previ-
ously established.

The chapter on Differentiation is followed by one on
Integration; and in each, as throughout the work, there
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are numerous practical problems in Geometry and Me-
chanics, which serve to exhibit the power and use of
the science, and to excite and keep alive the interest
of the student.

In writing this treatise, the works of the best Ameri-
can, English, and French authors have been consulted:
and from these sources the most of the examples and
problems have been obtained.

The author is indebted to Professors J, E. OLIVER aud
J. McMasox of Coruell University, and Professur O.
Roor, Jr., of Hamilton College, for valuable suggestions;
and to Mesars. J. 8. Cvsswe & Co. for the typograph-
ical excellence of the book.

J. M. TAYLOR.
Hasorow, N.Y.,
Nov., 1584,
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