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Improved Primal Simplex Algorithms
for
Shortest Path, Assignment and Minimum Cost Flow Problems

Abstract

In this paper, we present a new primal simplex pivot rule and analyse the
worst-case complexity of the resulting simplex algorithm for the minium cost flow
problem, the assignment problem and the shertest path problem. We censider
networks with n nodes, m arcs, integral arc capacities bounded by an integer number
U, and integral arc costs bounded by an integer number C. Let L and U denote the

nonbasic arcs at their lower and upper bounds respectively, and c_ii denote the

reduced cost of any arc (i, j). Further, let A be a parameter whose initial value is C.
Then our pivot rule is as follows: Select as an entering arc any (i, j) € L with ':_ij <

-Af2 or any (i, j) e U with ;ii 2 A/2 ; select the leaving arc so that the strong
feasibility of the basis is maintained. When there is no nonbasic arc satisfying this
rule then replace A by A/2. We show that the simplex algorithm using this rule
performs O(nm U logC) pivots and can be implemented to run in O(m? U logC)
time. Specializing these results for the assignment and shortest path problems we
show that the simplex algorithm solves these problems in O(n? 1ogC) pivots and
O(nm logC) time. These algorithms use the same data structures that are typically
used to implement the primal simplex algorithms fer network problems and have
enough flexibility for fine tuning the algorithms in practice. We also use these ideas
to obtain an Of{nm logC) label correcting algorithm for the shortest path problem
with arbitrary arc lengths, and an improved implementation of Dantzig's pivot rule.
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Networks/Graphs : Improved simplex algorithms for network flow problems

Keywords 1 Network flow algorithms, Minimum cost flow problem,
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In this paper, we present a new primal simplex pivot rule and analyze the
worst-case behavior of the resulting simplex algorithm for the minimum cost flow
problem. These results are also specialized for the assignment and shortest path
problems.

We consider a directed network G = (N, A) with node set N and arc set A. Each
arc (i,j)e A has a non-negative integer capacity ujj and an integer cost Cij. We denote
by n, m, U, and C, the number of nodes, number of arcs, maximum arc capacity, and
maximum absolute value of an arc cost, respectively. We represent by A(i) the set of arcs
incident on node i, i.e., the set of incoming and outgoing arcs at node i. Let deg(i) = |A ()|
denote the degree of node i for each ie N,

The primal simplex algorithm for the minimum cost flow problem, subsequently
referred to as the network simplex algorithm, has been extensively studied in the literature.
Researchers have also been interested in developing polynomial time network simplex
algorithms for the minimum cost flow problem and its special cases. Polynomial time
primal simplex algorithms have been developed for the shortest path problem, the
assignment problem and the maximum flow problem. The only polynomial time
simplex algorithm for the minimum cost flow problem is a dual simplex algorithm due
to Orlin [1984] which performs O(n? logn) pivots for the uncapacitated minimum cost
flow problem. Developing a polynomial time primal simplex algorithm for the
minimum cost flow problem is still an open preblem.

We now briefly review the literature devoted to this area of research. Dial,
Glover, Karney and Klingman [1979] and Zadeh [1979] showed that Dantzig's pivot rule
(i.e., pivoting in the arc with minimum reduced cost) for the shortest path problem with
non-negative arc lengths performs O(n) pivots when started from an all artificial basis.
Roohy-Laleh {1980] in his unpublished Ph.D. thesis developed an alternative simplex
pivot rule for the assignment problem for which the number of pivots is O(n?). Hung
[1983] developed a simplex method for the assignment problem in which the number of
pivots is O3 log(nC)).

Orlin [1985] showed that for integer data the primal simplex algorithm
maintaining strongly feasible bases performs O{nm CU) pivots for any arbitrary pivot
rule and O(nm U log (mCU)) for Dantzig's pivot rule. (This result was independently
developed by Dantzig [1983].) When specialized to the shortest path problem with



arbitrary arc lengths and the assignment problem, the algorithm performs O(n? log(nC))

pivots.

Akgul [1985a, 1985b] developed primal simplex algorithms for the shortest path
and assignment problems that perform O(n?) pivots. Using simple data structures,
Akgul's algorithms run in O(n?) time using simple data structure, and this time can be
reduced to O(nm + n? logn) using Fibonacci heap data structure due to Fredman and
Tarjan [1984]. Goldfarb, Hao and Kai [1986] describe another primal simplex algorithm
for the shortest path problem whose number of pivots and running times are

comparable to that of Akgul's algorithm.

Among the polynomial time dual simplex algorithms are the algorithms by
Roohy-Laleh (1980] for the shortest path problem, by Balinski [1985] and Goldfarb [1985]
for the assignment problem, and by Orlin [1984] for the minimum cost flow problem.

Recently, Goldfarb and Hao [1988) developed a polynomial time primal simplex
algorithm for the maximum flow problem. This algorithm performs O{nm) pivots and
can be implemented to run in O(n?m) time. Tarjan [1988] showed how to use dynamic
trees to further improve the running time to C{nm logn)

This paper is based on the results contained in Orlin [1985] where the worst-case
behavior of the primal simplex algorithm with Dantzig's pivot rule is analyzed. Our
rule is essentially obtained by incorporating a scaling technique in Dantzig's pivot rule.
Let Land U denote the nonbasic arcs at their lower and upper bounds respectively, and

¢jj denote the reduced cost of any arc (i, j). Further, let A be a parameter whose initial
value is C. Then our pivot rule is as follows: Select as an entering arc any (i, ) € L with

g < -A/2 or any (i,j) € U with Cjj2A/2; select the leaving arc so that the strong
feasibility of the basis is maintained. { We discuss strong feasibility in detail in Section
1.1.) When there is no nonbasic arc satisfying this rule then replace A by A/2. We call
this pivot rule the scaling pivot rule and the simplex algorithm using the scaling pivot rule
the scaling network simplex algorithm.

We show that the scaling network simplex algorithm solves the minimum cost
flow problem in O(nm U logC) pivots and can be implemented to run in O(m? U logC)
time. Specializing these results for the assignment and shortest path problems, we show
that the scaling network simplex algorithm solves both of these problems in O(nzlogC)
pivots and O(nm logC) time. These results on the number of pivots are comparable to




that of Orlin [1985]) for Dantzig's pivot rule, but the running times here are better by a
factor of n.

Intuitively, the reason why the scaling network simplex algorithm is good is that
the algorithm selects an entering arc with "sufficiently large” violation of the optimality
conditions. This causes a "sufficiently large” imprevement in the objective function and
helps to show that the number of pivots are "sufficiently small."  Further, the arc with
"sufficiently large" violation can be picked up with little effort.

Among other results we obtain a scaling version of the label correcting algorithm
that solves the shortest path problem with arbitrary arc lengths in O(nm logC) time. We
also show that the primal simplex algerithm for the minimum cost flow problem with
Dantzig's pivot rule can be implemented in O(m? U 1ogC) heap operations where each
heap operation takes O{min (log n, loglog{nC)} time.

The results in this paper rely on properties of the network simplex algorithm,
strongly feasible bases and the "perturbation technique”. Though we have tried to make
this paper self-contained, we refer the reader to the papers of Orlin [1985} and Ahuja,
Magnanti and Orlin [1988] for a more thorough discussion on these topics.

1. The Minimum Cost Flow Problem

In this section, we describe a network simplex algorithm that solves the
minimum cost flow problem in O(nmU logC) pivots and can be implemented in
O(m?2 U logC) time. The analysis of this algorithm, as specialized for the assignment
problem and the shortest path problem, is presented in Sections 2 and 3.

11 Background

We consider the following node-arc formulation of the minimum cost flow

problem.

Minimize E
G,j)e

 %i (1)

subject to



S - X xi = bl), forall ie N, (1b)
i 6,9 AR b

0=x; <uy, foreach (i pe A. (19

In this formulation, if b(i) > 0 then nede i is a supply node and if b(i) < 0 then
node i is a demand node. We assume that ¥ b(i) = 0. We also assume that the
ie
minimum cost flow problem has a feasible solution. The feasibility of the minimum
cost flow problem can be ascertained by solving 2 maximum flow problem.

The simplex algorithm maintains a basic feasible solution at each stage. A basic
solution of the minimum cost flow problem is denoted by a triple (B, L, U); B,L and U
partition the arc set A. The set B denotes the set of basic arcs, i.e, arcs of a spanning tree,
and L and U respectively denote the sets of nonbasic arcs at their lower and upper bounds.

We refer to the triple (B, L, U) as a basis structure. A basis structure (B, L, U) is called feasible

if by setting x;; = 0 for each (i, ) € L, and by setting Xjj = ujj for each

(i, ) € U, the problem has a feasible solution satisfying (1b) and (1c).

A dual solution to the minimum cost flow problem is a vector n of node potentials
and a vector ¢ of reduced costs defined as Eij =Gjj - n{i) + n(j). Since one of the mass
balance constraint in (1b) is redundant, we can set one node potential arbitrarily. We
henceforth assume that =(1) = 0.

A feasible basis structure (B, L, U) is called an optimum basis structure if it is
possible to obtain a set of node potentials « so that the reduced costs satisfy the following
optimality conditions:

qjj =0, for each (i, e B, (2a)
Eii 20, foreach (i,j) e L, (2b)
E"i <0, foreach (i jle U, (2c)

Given a basis structure, the node potentials can be uniquely determined by setting

n(1) = 0 and then using the (n-1) equations of (2a). A nonbasic arc (i, j) not satisfying (2b)
or (2c), whichever is applicable, viclates its optimality condition. In such a case, | Eii' is

called the wiolation of the arc (i, j).




