ELEMENTS OF PLANE AND SPHERICAL TRIGONOMETRY, WITH ITS APPLICATIONS TO THE PRINCIPLES OF NAVIGATION AND NAUTICAL ASTRONOMY. WITH THE LOGARITHMIC AND TRIGONOMETRICAL TABLES

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649572212

Elements of Plane and Spherical Trigonometry, with Its Applications to the Principles of Navigation and Nautical Astronomy. With the Logarithmic and Trigonometrical Tables by J. R. Young

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

J. R. YOUNG

ELEMENTS OF PLANE AND SPHERICAL TRIGONOMETRY, WITH ITS APPLICATIONS TO THE PRINCIPLES OF NAVIGATION AND NAUTICAL ASTRONOMY. WITH THE LOGARITHMIC AND TRIGONOMETRICAL TABLES

Trieste

ELEMENTS

OF PLANE AND SPHERICAL

TRIGONOMETRY,

WITH ITS APPLICATIONS TO THE PRINCIPLES

OP

NAVIGATION AND NAUTICAL ASTRONOMY;

WITH THE

LOGARITHMIC AND TRIGONOMETRICAL TABLES.

BY J. R. YOUNG,

PROPESSOR OF MATHEMATICS IN BELFAST COLLEGE,

And Author of "Elements of Geometry," "Treatise on Algebra," "Elements of Analytical Geometry," "Methonoxical Tables," "Computation of Legarithms;" "Elements of the Differential Calculus; "Elements of the Integral Calculus," and "Elements of Mechanics."

TO WRICH ARE ADDED SOME ORIOTRAL RESEARCHES IN

SPHERICAL GEOMETRY;

BY T. S. DAVIES, F.R.S. LOND. AND EDINE.

18 10

LONDON:

JOHN SOUTER, SCHOOL LIBRARY, 73, ST. PAUL'S CHURCH-YARD.

1833.

PREFACE.

34

It is the design of this treatise to establish the theory of Plane and Spherical Trigonometry analytically, and to present that theory, together with some of its most interesting and valuable applications, in a form fitted for elementary instruction.

Of late years several analytical works on Trigonometry have been published in this country; but, as they are confined almost entirely to the theory of the subject, it may be questioned whether, to many young students, they prove much else than so many collections of mere algebraical exercises. Yet a book upon so practical a subject as Trigonometry ought undoubtedly to be something more than this, and ought not to be considered as complete when the various calculations which the science involves, and which its name implies, are wholly omitted.

The symbolical expression of a practical rule, in algebraic language, will often, to the young student, but indistinctly point out the numerical operation. Those much occupied

PREFACE.

in mathematical instruction know full well that a learner may readily yield his assent to every step of an algebraic process, be fully satisfied as to the truth of the result to which it leads, may even clearly see a valuable truth involved in it, and may yet be very far from perceiving how to turn it to account in any case of actual calculation. Indeed, algebraical formulas, transform them as we will, cannot always be made to indicate the best mode of arithmetical arrangement; and yet much, as regards facility of operation, depends upon this arrangement in many parts of practical mathematics, but especially in Trigonometry.

In the present volume, therefore, both the theory and the practice of the science have been introduced, every practical formula being illustrated by examples of the numerical calculation, arranged in the proper form. This plan of combining practice with theory, in works like the present, was always adopted by the earlier English writers, and it is to be regretted that recent authors have, in their admiration of foreign methods, departed so widely, in this respect, from the example of their predecessors, dwelling so much as they do upon the symbols, and so little upon the things signified.

In addition to the practical illustration of formulas, a distinct part of the work is devoted to the principles of Navigation and Nautical Astronomy, in which will be found a very short and convenient method of clearing the Lunar Distance, for the purpose of ascertaining the Longitude at

iv.

PREFACE.

Sea. This method is probably new, although, as the analytical expression for it occurs during the investigation of the well known formula of Borda, it is equally probable that it has been noticed before.

The supplement appended to the treatise is from the pen of my valued and accomplished friend, T. S. Davies, Esq. Fellow of the Royal Society of Edinburgh, and of the Royal 3-r Astronomical Society of London. It will be found to contain researches, which cannot fail to prove acceptable both to the inquiring student and to the January 1, 1833.

÷

J. R. YOUNG.

÷.

vii								
10.00	i.		CON	TENTS.				
AR	TICLE.						P.	AGE.
19.	In a plane	triangle t	he sum of	any two a	ides is to	their differ	rence	
	as the tang	ent of ha	If the sum	of the op	posite any	les to the	tan-	
	gent of hal	f their di	fference		10801		•	21
20.	Formulas f	or determ	ining an an	ngle in ter	ma of the	aidea	20	22
21.	Remarks of	n these fo	rmulas				12	23
22.	Solution of	plane tri	angles in g	eneral	2.9			24
23.	Examples of	of the solu	ation of ob	lique-ang	led triang	les		25
24.	When two	sides and	the include	d angle a:	re given			28
ib,	Examples	3 .		- 18 ⁻				ib.
25.	When the t	three side	a are given					30
ib.	Examples		10-110301010	° 🤬	<u>16</u>	¥		32
11.23	nintesettele s ete		and mind a	CIRCING CHIN	i distance		•22	34
Сял	ap. 1v. Inve	estigation	of Trigon	ometrical	Formula	• •	•2 }}	34 46
Сял 26.	P. IV. Ince Formulas fo	<i>stigation</i> or the sur	of Trigono	ometrical rence of t	Formula: wo unequ	al arce	•	
Сял 26.	ap. 1v. Inve	estigation or the sur the angle	of Trigon n and diffe s A, B, C,	ometrical rence of t	Formula: wo unequ	al arce	s re-	48
Сял 26.	AP. IV. Ince Formulas fo Proof that t markable p	estigation or the sur the angle roperty, v	of Trigon n and diffe s A, B, C,	om <i>etrical</i> rence of t of a play	Formula: wo unequ ie triangl	r . al arcs s bave this	s 78-	48
Сял 26. 27.	AP. IV. Ince Formulas fo Proof that t markable p	or the surplus of the surplus $r_{\rm operty}$, $r_{\rm operty}$	of Trigona n and diffe s A, B, C, iz. B + tan. (om <i>etrical</i> rence of t of a play	Formula: wo unequ ie triangl	r . al arcs s bave this	. re-	46 Њ.
Сял 26. 27.	AP. IV. Ince Formulas fo Proof that t markable p tan. A	estigation or the sur- the angle roperty, v + tan. 1 or multipl	of Trigonu n and diffe s A, B, C, s A, B, C, iz. B + tan. 0 le arcs	ometrical rence of t of a play C = tan.	Formula: wo unequ ie triangl	r . al arcs s bave this	. re-	46 īь. 49
Сял 26. 27. 28. 28.	AP. IV. Inve Formulas fo Proof that i markable p tan. A Formulas fo	estigation or the sur- the angle roperty, v + tan. 1 or multiple n of De 1	of Trigon n and diffe s A, B, C, lz. B + tan. 0 le arcs Moivre's F	ometrical rence of t of a play C = tan. formula	Formula: wo unequ le triangl A tan. B	r . nal arcs e bave thi tan. C		46 īb. 49 ib.
Сял 26. 27. 28. 28.	AP. IV. Ince Formulas fo Proof that 1 markable p tan. A Formulas fo Investigatio	estigation or the sur- the angle roperty, v + tan. 1 or multipl m of De 1 pressions	of Trigon n and diffe s A, B, C, lz. B + tan. 0 le arcs Moivre's F	ometrical rence of t of a play C = tan. formula	Formula: wo unequ le triangl A tan. B	r . nal arcs e bave thi tan. C		46 īb. 49 ib.
Сял 26. 27. 28. 29.	AP. IV. Ince Formulas fo Proof that 1 markable p tan. A Formulas fo Investigatio General exp	or the sur the angle roperty, v + tan.] or multipl n of De] pressions ormula	of Trigona n and diffe s A, B, C, iz. B + tan. (le arcs Moivre's F for sin. n	ometrical rence of t of a plan C = tan. formula A and cos	Formula: wo unequ le triangl A tan. B	r . nal arcs e bave thi tan. C		46 īb. 49 ib. 51
Сял 26. 27. 28. 29. 30.	AP. IV. Ince Formulas fo Proof that 1 markable p tan. A Formulas fo Investigatio General exp Moivre's fo	estigation or the sur the angle roperty, v + tan. 1 or multipl n of De 1 pressions ormula mulas for	of Trigona n and diffe s A, B, C, iz. B + tan. (le arcs Moivre's F for sin. n	ometrical rence of t of a plan C = tan. formula A and cos	Formula: wo unequ le triangl A tan. B	r . nal arcs e bave thi tan. C		46 ib. 49 ib. 51
Сил 26. 27. 28. 29. 30. 31. 332.	AP. IV. Inte Formulas fo Proof that 1 markable p tan. A Formulas fo Investigatio General exp Moivre's fo Various for Formulas fo Formulas in	estigation or the sur- the angle roperty, v + tan. i or multipi m of De i pressions or mula mulas for or half are twolving t	of Trigona n and differ s A, B, C, iz. B + tan. 0 le arcs Moivre's F for sin. n double arc s he half sur	ometrical rence of t of a play C = tan. Cormula A and cos cs m and half	Formula: wo unequ is triangl A tan. B	al arcs e bave this tan. C uced from		46 ib. 49 ib. 51 53 55
Сил 26. 27. 28. 29. 30. 31. 332.	AP. IV. Inve Formulas fo Proof that 1 markable p tan. A Formulas fo Investigatio General exp Moivre's fo Various for Formulas fo	estigation or the sur- the angle roperty, v + tan. i or multipi m of De i pressions or mula mulas for or half are twolving t	of Trigona n and differ s A, B, C, iz. B + tan. 0 le arcs Moivre's F for sin. n double arc s he half sur	ometrical rence of t of a play C = tan. Cormula A and cos cs m and half	Formula: wo unequ is triangl A tan. B	al arcs e bave this tan. C uced from		46 ib. 49 ib. 51 53 55 57
Сил 26. 27. 28. 29. 30. 31. 332.	AP. IV. Inte Formulas fo Proof that 1 markable p tan. A Formulas fo Investigatio General exp Moivre's fo Various for Formulas fo Formulas in	estigation or the sur- labe angle roperty, v + tan. 1 or multipl m of De 1 pressions ormula mulas for or half are toolving t	of Trigona n and differ s A, B, C, iz. B + tan. 0 le arcs Moivre's F for sin. n double arc s he half sur	ometrical rence of t of a play C = tan. Cormula A and cos cs m and half	Formula: wo unequ is triangl A tan. B	al arcs e bave this tan. C uced from		46 ib. 49 ib. 51 53 55 57

i.

5.¥

17

ŝ.

53

 ≤ 2

CONTENTS.

•

ix.

3e

÷3

PART II.

SPHERICAL TRIGONOMETRY.

CHAP. I. On the Sphere.

AR	TICLE.			263			P	AGE.
34.	Definition	8	• Ē		*	<		65
35.	The sectio	n of a spl	ere cut	by a plan	e must be a	circle	8 •	66
36.	The circu	nferences	of two	great circ	les bisect es	ach other	35	67
ib.	A spherica	l angle is	measure	d by the	plane angle	formed by	tan-	
	gents to th	he sides o	f the for	mer, drav	n through	its vertex	12	65
37.	The great	circle dis	tance be	tween the	poles of t	wo intersec	ting	
	great circl	es measur	es their	angle of	intersection			ib.
ib.	Every grea	t circle p	assing 1	through t	he poles o	f another i	s at	16
	right-angl	es to it						ib.
38.	Any side o	f a spheri	cal trian	gle is less	then the st	am of the o	ther	
	two		- eg - 23	S	100		2.8	69
39.	The three	sides are	together	less than	a whole c	ircumferenc	æ.	ib,
40.	Characteri	stic prope	rty of th	e polar tr	iangle	100-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		70
41.	Characteris	stic prope	rty of th	e supplem	ental trian	gle		71
42.	The angle	of every	spheric	al triangle	are togeth	er greater i	than	
	two right-	angles an	d less th	an six			~~ <u>3</u>	ib.
43.	The arc of	a great	circle is	the short	est line the	at can be dr	awn	
	on the sph	ere from	one poin	at to anot	her	•		72
	그 아니는 것이 같은 말 같은 것이 같이 같이 같이 많이 많이 많이 많이 많이 했다.		0.000					

CHAP. 11. Investigation of Formulas and Rules for the solution of Spherical Triangles.

44.	I. The fundamental equations of Spherical Trigonometry						
45.	5. Deduction of geometrical properties from these equations						
46.	6. Relation between the sides and opposite angles						
47.	Formulas for the angles in terms of th	ne sides	200		77		
48.	Formulas involving only a, b, A, C		0.000	\sim	78		
49.	49. Formulas for the sides in terms of the angles .						
50.	To convert any formula involving side	ss and angl	es into ano	ther			
	similarly involving angles and sides	• • [©]	2002	18	80		
51.	Napier's Analogies	86 86			81		

CONTENTS. 120

CHAP. 111. Solutions of the different cases of Spherical Triangles.

ART	P	AGE.		
52.	Formulas for right-angled triangles; Napier's 1	rules	- 25	83
53.	Examples	6		86
54.	Solution of quadrantal triangles			89
55.	Solution of oblique-angled triangles	10		93
58.	When the three sides are given .		÷.	94
57.	When the three angles are given .		1	96
58.	When two sides and the included angle are give	n .		97
59.	When two angles and the interjacent side are g	iven		100
60.	When two sides and an opposite angle are give	а.		103
61.	When two angles and an opposite side are given	в.		106

PART III.

 $T \ge 1$

APPLICATION OF TRIGONOMETRY TO NAVIGATION AND NAUTICAL ASTRONOMY.

	62. Introductory remark	8			•		109
c ³	CHAP. 1.	On the Prin	nciples of	Navigatio	75.		
	63. Definitions	10 • 01		• 3			110
	64. On plane sailing			•		ŝ.	113
	ib. Examples	3	× .	* : 0	•		114
	65. On traverse sailing						116
	ib. Examples		8			2	117
	66. On parallel sailing	•		83 B	•	÷	121
	ib. Examples		*	e 5			122
	67. On middle latitude se	Q	8 1			123	
	ib. Examples		1.15	¥2 - 3			126
	68. On Mercator's sailin	*			ae.	127	
	69. Example of Mercato		â			129	
	70. Rule for constructin	meridion	al parts by	means of	8		
	table of logarithmic	tangents		2 - S	30 5	æ	130
	ib. Examples	1963					131

32 ³²

x.