ANALYTIC MECHANICS

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649052196

Analytic Mechanics by John Anthony Miller & Scott Barrett Lilly

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

JOHN ANTHONY MILLER & SCOTT BARRETT LILLY

ANALYTIC MECHANICS

Trieste 👘

hysics Nech. M.

ANALYTIC MECHANICS

BY

١

÷

2

JOHN ANTHONY MILLER, PH.D.

PROFESSOR OF MATHEMATICS, SWARTHMORE COLLEGE

ASD

SCOTT BARRETT LILLY, C.E.

ASSISTANT PROFESSOR OF ENGINEERING SWARTHNORE COLLEGE

IN U.S.A

03000

20/11/21

D. C. HEATH & CO., PUBLISHERS BOSTON NEW YORK CHICAGO

PREFACE

WE have attempted to write a rigorous, teachable introduction to the study of mechanics. We believe that certain fundamental principles of mechanics, used in common by students in the various branches of engineering, in theoretical physics, and in celestial mechanics are essential to the satisfactory progress of a student in any of those fields. To this end, we have chosen as our subject matter only such fundamental theorems. We have not attempted to develop the special methods that are used in some branches of these sciences but not in others, because having fixed the principles on which these methods are based, they are better studied in treatises on those subjects. We have, however, indicated the fields in which certain processes are employed and have told the student where more detailed information can be found.

One purpose of the work is to develop facility in the application of mathematical formulæ to the investigation of physical phenomena. We have observed about the same degree of rigor that is observed in the best modern undergraduate texts in mathematics. We have been careful to state the assumptions that have been made and the conditions which must prevail before a given mathematical process is applicable, and have then proved rigorously the theorems based on the stated conditions.

We have quoted freely the theorems that students who have completed a first course in the calculus are supposed to know. In this sense the book is mathematical.

The illustrative problems that are solved and the exercises which are set for the student are chosen largely from engi-

PREFACE

neering fields. They are real problems chosen from real structures or real machines. In this sense the book is a mechanics of engineering.

We have chosen the older methods of treatment, such as the resolution of forces, etc., because we believe that in this way the student keeps in a little closer touch, at least in the beginning, with the physics of the problem.

While we have tried always to be rigorous, our ambition has been to produce a book that is distinctively teachable. We have made many "remarks" to students, in which we have given directions and cautions in the applications of the fundamental theorems to practical problems. These "remarks" are not mere directions for the solutions of problems, but fundamental discussions of the strength and limitations of basic methods which, once mastered, will be of service throughout the student's professional career.

The book may be adapted to a number of possible courses, emphasizing more or less the engineering or the mathematical phase of the subject, as the reader desires. He may omit, without breaking the logical sequence, any article in fine print, if he omits all succeeding articles in fine print. He may, to reduce the amount of mathematics necessary, omit articles 95–106, from Center of Gravity, and articles 229–242, from Moment of Inertia. If he desires to eliminate parts applicable especially to the analysis of structures, he may omit articles 87–88 (three-force-pieces), and may abbreviate further by omitting articles 85–88. He may omit either all of Chapter iv, or articles 122–124, or all of Chapter viii, or all of Chapter xiii, or any number of these, so far as requisition made on them by succeeding articles is concerned.

We have used $\frac{W}{q}$ instead of "mass."

JOHN A. MILLER. SCOTT B. LILLY.

SWARTHMORE COLLEGE, June, 1915.

iv

INTRODUCTORY

ARTI	CLR											P.	AGR
1.	Mechani	cs D	efined		•	50	1997	×0		9 8		20	1
2.	Fundam	enta	l Elen	nenta								*	2
3.	Mass	16	- Conser	1		1	201	÷.	2	0			2
4.	Length	1	÷.	-		S2	3.57	S)	2		1.		2
5.	Time	10. 10.	34	•	×		34	¥3	×.	34		G	2
6.	Motion	*	a u		*		10	e 2			383		3
7.	Velocity	+		•							1.00		3
8,	Velocity,	, eith	er Ur	niform	n or	Vari	able						3
9.	Mathem	atica	l Exp	ressio	m f	or Ve	locity		÷.	÷.		2	3
10.	Mathema	atica	1 Exp	ressio	m fe	or Ace	celera	tion	8		800	87	4
11.	Newton'	s La	ws of	Motio	n			10	ж.	÷.	100	20	4
12.	Discussio	n of	New	ton's	Law	s of 1	Motio	n				*	5

PART I. STATICS

CHAPTER I

The Composition and Resolution of Forces Acting on a Particle

13.	Force	20	10		$\mathcal{S}_{i,i}$	100		10	30.	2.0			6
14.	Measure	emen	t of 1	Force		- X							6
15.	Represe	ntati	on of	Fores	е	÷.	14	1		<u></u>		2	7
16,	The Re	sulta	nt	100	12	32	63 8		(a)	3		41	8
17.	Parallel	ogra	m of	Forces	8		St.			(x)		83	8
18.	Proofs of	of Pa	ratle	logran	1 of	Fore	ea		*	200		•3	8
19.	Definiti	ons											9
20.	Analyti	c De	termi	inatio	i oi	Resu	ltant	of T	wo F	orces	1.		9
21.	Resulta	nt of	Any	Num	ber	of Fe	rces	(3)					10
22.	Polygor	of I	Force	s .			198		•	36	12	έŝ.	10
***	rorygon	1 10 1	orce	S .	•	÷	99 4		•	38) -		• 1	

v

ABTI				PAGE
23.	Remark on Composition and Resolution of Forces	843	- 42	11
24.	Rectangular Components of a Force	(14))		11
25.	Coplanar, Collinear, and Concurrent Forces Defined			11
26-3	27. The Resultant of Any Number of Coplanar Ford	es A	ct-	
	ing on a Particle. The Analytic Expression			12
28.	Theorem For Any System of Forces Acting on a 1	artic	ele,	
	There Is One and Only One Resultant	240		13
29.	The Determination of the Resultant of Forces Actin	ng or	1 a	
	Particle, but not Lying in the Same Plane .			14
30.	Exercises			16

CHAPTER II

STATICS OF A PARTICLE

31.	Statics Define	ed		*3		- 2						18
32.	Equilibrium			÷2								18
33.	Résumé .	¥			÷.,	. ii				2.5		18
34.	Analytic Con	nditi	ons	of E	Quili	brium	of of	Cop	lanar	For	ces	
	Acting o				÷. –		\sim					18
35.	Analytic Con	ditio	ns of	Equ	ilibri	ium of	Noi	-Coj	lanar	For	ces	19
36.	Exercises											20
37.	Conditions of	Equ	ailib	rium	Cons	iderer	l Gra	phic	ally			21
-38-	40. Triangle o	of Fe	orces	•								21
41.	Exercises			10		4	-0					23
42,	Types of For	ces										23
43.	Mechanics of	a P	artic	le Ma	y Be	Exte	nded	to th	he Me	chan	ics	
	of a Fini	te N	umb	er of	Poin	ts Rig	gidly	Con	nected	1.		27
44.	Remark on F	lietit	ious	Bodi	es				2000 C	S. 1	1	27
45.	Solution of P	roble	ems.	Su	ggest	ions			- W			28
46.	Exercises			•	Ξ.		141					31

CHAPTER III

971

FORCES ACTING ON A RIGID BODY

47.	Rigid Body Defined		1.00	 	2.4	•	35
48.	Additional Assumptions .						35
49.	Non-Parallel Forces		1993		14	1	35
50-	51. Resultant of Parallel Forces	÷ 3	2.3				36

	lot.n								P
52.	Center of Parallel Forces D	efine	d.					÷	
53-	54. To Find the Center of A	loy 1	Numl	ber of	Para	allel	Force	8 .	
55,	Properties of the Center of	Para	llel I	orces	8.8	42		34	
56.	Exercises	6 1			393	20		7.4	
57.	The Moment of a Force	+:	æ	20.1					
58.	Sign of a Moment .								
59.	The Composition of Momen	its	÷.	14	199	- 23			
60.	Couples Defined		12	12	3	20		274	
61.	Theorem The Moment of	of the	e Fo	rces c	of a	Cour	le w	ith	
62.	and the Arm of the Co Theorem. — The Effect of a changed if it Be Repli Same or a Parallel Plan	Cou aced	ple o by	Anoth	er C	ouple	in 1	the	
13.	Composition of Couples .	100.00		•		e			
	The Axis of a Couple .	- 8			100				
	We May Combine a Couple	and	a For	rce A	ting	in th	ie Sa	me	
	Plane or Parallel Plane								
36.	Theorem Any Number of			0.000 PR .000 U			id Be	dy	
	· Is Equivalent to a Ford						e Ver	1	
87.	A System Equivalent to An					Acti	ng or	n a	
	Rigid Body	B.C							

CHAPTER IV

VECTORS

68.	Vectors and Scalars Defined	ä	- 20		S7				54
69.	Representation of Vectors		27	3	34	- 63	3	- 94	54
70.	Equivalent Vectors .	•	3 35	58	114	•3			55
71.	Addition of Vectors .		•						55
72.	Subtraction of Vectors .	•	1		49 1		4		56
78.	Product of a Vector and a Se	alar	÷.,	਼				- 2	57
74.	Composition and Resolution	of V	Tecto	rs	3 2		2	- 64	57
75.	Rectangular Components of	a Ve	ector	4					57
76.	Components of a Vector a	long	Th	ee	Lines	Wh	ich	Are	
	Mutually Perpendicular								58
77.	The Resultant of Any Num!	er o	f Vee	etor	s .		1	<u>_</u>	58
78.	Applications of Theorems of	ve	ctors	192	32				59

CHAPTER V

THE STATICS OF A RIGID BODY

ARTIC												PAGE
79.	Conditions i	for E	quilik	riu	n of a	a Syst	tem o	f Cop	lana	r For	ces	
	Acting	on a	Rigi	d Be	ody	•	•					60
80.	An Importa	ant C	orolla	ry		÷.	1	1.0	1			61
81.	Remark on	Solu	tion o	f P	robler	118	- 22	- 30°		1.	- 42	62
82.	Uniform Ba	ar De	fined									62
83.	Illustrative	Prot	lem	•					\sim			63
81.	Exercises											64
85.	Method of S	Sectio	ons	Tw	o-fore	e Pie	BOBS		2			65
86.	Exercises							- X	÷4	243	- 23	67
87.	Three-force	Piec	es	\mathbf{x}		(a	000		\sim		- 60	68
88.	Exercises			•0	*							76

CHAPTER VI

THE CENTER OF GRAVITY

89.	Center of Gravity Defined			2(a))				÷	82
90.	Definitions							1	82
91.	Some Special Cases .								82
92.	Principles of Symmetry			(*)				- 5	83
93.	Center of Gravity of Comp	ound	Bo	dies				- 27	84
94.	Exercises		\mathbf{x}^{-}	1345			- i i i i i i i i i i i i i i i i i i i	-2	86
95.	General Formulæ for Coör	dinat	es o	f Cen	ter o	f Gra	vity	• :	88
96.	The Weight per Cubic Uni	it, p							89
	The Quantity, dV .		÷.					1	89
98.	The Quantity, dV (Contin	ued)	<u>, 1</u>	100					91
	To Find the Center of Gra	- N. C. C.			lar A	Ire		- 22	94
100.	Exercises	1		5(•1)					95
101.	To Find the Center of Gra-	vity .	of a	Quad	rant	of an	Ellip	pse	95
	To Find the Center of Gra	CTV 11 TO 10		0.05					
	form Thickness, the D								
	Distance from a Point of								96
103.	To Find the Center of G	ravit	y of	the	Area	of 1	Unifo	rm	
	Density Included between								
	Line Which Passes thre								96

viii