THE HUMAN EYE: ITS OPTICAL CONSTRUCTION POPULARLY EXPLAINED

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649609161

The Human Eye: Its Optical Construction Popularly Explained by R. E. Dudgeon

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

R. E. DUDGEON

THE HUMAN EYE: ITS OPTICAL CONSTRUCTION POPULARLY EXPLAINED

Trieste

THE HUMAN EYE; 96481 ITS OPTICAL CONSTRUCTION POPULARLY EXPLAINED.) BY R. E. DUDGEON, M.D. 1.: LONDON: HARDWICKE AND BOGUE, 192, PICCADILLY, W. 1878. 10 Rž

85 1 ÷ * 88 77, . 8 ¥ %

PREFACE.

l

THE novel views in this little work respecting subaqueous vision, air lenses, and visual accommodation were first promulgated in two pamphlets, entitled, 'Notes on the Dioptrics of Vision,' and 'The Mechanism of Accommodation,' published in 1871 and 1872. They were also explained in lectures delivered in 1871 before the Sunday Lecture Society and in 1872 at the Sunday Evenings for the People. Again, in August 1872, the Author read a paper at the meeting of the International Ophthalmological Congress respecting his views on the mechanism of accommodation, which is published in the Transactions of the Congress. Since the date of these publications and lectures, further experiments and observations by the Author himself and by some continental physiologists have confirmed the correctness of the views he originally put forward respecting the

Preface.

mechanism of visual accommodation, and as these views have excited some interest both in this country and in Germany, the Author has been induced to write a more complete treatise on the optics of vision in plain and untechnical language, so as to enable those not conversant with optical science to understand this important and interesting subject. The Author believes that a popular method of treatment of his subject is perfectly compatible with scientific accuracy. In the special optical part of this treatise he has confined himself to those optical facts and principles which have a direct bearing on the optics of the eye.

The Author has limited himself strictly to his subject, which is the optical construction of the normal human eye. The reader will therefore not expect to find a full account in this small volume of those large subjects the physiology, anatomy, histology, pathology, and comparative anatomy of the eye, each of which would require a large book for its proper treatment, and could hardly form the theme of a popular treatise.

vi

CONTENTS.

x

.

121

8

.

- 52

蒙

	1.—The eye an optical instrument constructed on ordinary optical
	principles I
	2 A lens the characteristic feature of all optical instruments 1
	3What is a lens !
	4.—Refraction of light
	5.—Refraction through a transparent medium with parallel sides 3
	6Refraction of obliquely impinging rays
	7Rule of refraction
	8.—Different refractive powers of different transparent media 4
-127	9.—Refraction of the earth's atmosphere 5
	10Construction of lenses 6
ţ	11Forms of glass lenses
	12Refraction of parallel rays through a double convex lens 7
	13Refraction of divergent rays through a double convex lens, 9
	14 Refraction of parallel rays through a double concave lens 10
	15,-The amount of refraction depends on the difference between
	refractive power of lens and medium transmitting rays II
	16.—Refraction of a glass lens in water
	17Lenses of less refractive power than transmitting medium 12
	18.—Shapes of such lenses
	19Refraction of parallel rays through a double convex lens of
	less refractive power than transmitting medium
	20Refraction of parallel rays through a double concave lens of
	this character

-	•			
	13.44	100		
-	on		~~	э.

PARAGRAPH						PAGR
21Combination of lenses in order to increa				• · · · · · · · · · · · · · · · · · · ·	0.12	16
22Combination of lenses in order to dimin						17
23Picture of an object in front of lens		vn o	n a	scr	een	
behind it				••		18
24.—The screen must be nearer the lens f objects than for near objects						19
25Alterations required to adapt the focus	from					۵. د در
objects		•		**	••	19
26The eye resembles a photographic came			••		••	20
27Optical diagram of the normal human ep	·		••			20
28Different curvatures of front and back o					••	23
29Surfaces of the eye lenses not spherical b					**	24
30 Refraction of parallel mys of light by the						24
31 The retina or screen of the eye only pe						
small space	2012	••	÷2	100		26
32 This imperfect sensitiveness compensat						
of the eye's movements						26
33 Optical differences of eye and photograp	phic o	ame	TR		•	28
34 The iris the disphragm of the eye		•••	**		•••	28
35The aqueous humour the chief lens of t	the e	ye;	the	crys	tal-	
line a secondary lens		. *	a 1			29
36 Operations for cataract enable us to a	ascer	tain	the	pre	cise	
lenticular power of the crystalline						30
37 Refraction of parallel rays by an eye de					tal-	
line lens						31
38 Determination of the refractive power of					s	32
39 By extinguishing the aqueous lens and						
			50 I	·		
40Immersion in water extinguishes the aqu						33
						34
42Lens power required to restore perfect						35
43Glass lens required for this purpose						35
44.—Preferable to make lenses of air for use				**	515	35
그 같은 것은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것				1		35
4)		••				30

viii

53

1

1

.

T A

۱

Ţ

0		A	
1 0	57 F.A	4470	
$-\nu$	440	nts.	

	AGE
46 Effect of double concave air lens in restoring perfect vision	
under water	36
47.—Air spectacles for divers	37
48Improved construction of air lenses for divers	38
49 Perfect vision obtained with air spectacles under water	38
(NoteLetter from Sir J. Herschel on the subject)	39
50.—Curious effects of perfect vision under water	40
51Optical effects observed in a swimming bath	41
52The distinctness of objects in or at the bottom of the water	
not affected by agitation of its surface	47
53.—Reciprocal vision of observers in and out of water	48
54.—Optical diagram of eyes of skate and turtle	49
55Vision of near objects	51
56.—Changes required to adapt the eye to near vision	52
57.—Supposed increase of distance betwixt lens and retina	52
58.—Increased refractive power of eye lenses, or of one of them	53
59Alleged increase of the convexity of the cornea	54
60 Young's belief that the convexity of the crystalline increased	55
61Langenbeck's catoptric observations	55
62 Cramer assumes increased convexity of crystalline	56
63Helmholtz and Donders are of the same opinion	56
64-Differences in the catoptrical appearances seen by different	
observers., ., ., ., ., ., ., ., ., ., ., .,	57
65.—Cramer's diagram	57
66.—Donders' diagram	58
67.—Helmholtz's diagram	58
68Changes said by Heimholtz to occur in near accommodation	59
69 Changes alleged by Hensen and Völcker to occur in near	.,,
accommodation	60
70Commonly received explanation of the process	61
71.—Objections to this explanation	66
72.—The catoptrical appearances in the eye examined	69
73.—Catoptrical appearances when observed from both sides	70
74.—Inference to be drawn from these observations	73
rd- interence to be trawn from these observations	13

,

¥3

6**2**

ix