FOR COLLEGES, UNIVERSITIES, AND TECHNICAL SCHOOLS

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649052158

Analytic Geometry for Colleges, Universities, and Technical Schools by E. W. Nichols

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

E. W. NICHOLS

FOR COLLEGES, UNIVERSITIES, AND TECHNICAL SCHOOLS

ANALYTIC GEOMETRY

FOR

COLLEGES, UNIVERSITIES, AND TECHNICAL SCHOOLS.

BY

E. W. NICHOLS,

PROFESSOR OF MATHEMATICS IN THE VIRGINIA MILITARY
INSTITUTE.

LEACH, SHEWELL, & SANBORN, BOSTON. NEW YORK. CHICAGO.

Math 8508.92.5

Harvaro University, Dept. of Education Library

TRANSFERRED TO MARYARD COLLEGE LIBRARY APR 15 1921

Copyright, 1892, By Leach, Shewell, & Sanborn.

C. J. PETERS & SON, Typographers and Electrotypers.

PRESS OF BERWICK & SMITH.

PREFACE.

This text-book is designed for Colleges, Universities, and Technical Schools. The aim of the author has been to prepare a work for beginners, and at the same time to make it sufficiently comprehensive for the requirements of the usual undergraduate course. For the methods of development of the various principles he has drawn largely upon his experience in the class-room. In the preparation of the work all authors, home and foreign, whose works were available, have been freely consulted.

In the first few chapters elementary examples follow the discussion of each principle. In the subsequent chapters sets of examples appear at intervals throughout each chapter, and are so arranged as to partake both of the nature of a review and an extension of the preceding principles. At the end of each chapter general examples, involving a more extended application of the principles deduced, are placed for the benefit of those who may desire a higher course in the subject.

The author takes pleasure in calling attention to a "Discussion of Surfaces," by A. L. Nelson, M.A., Professor of Mathematics in Washington and Lee University, which appears as the final chapter in this work.

He takes pleasure also in acknowledging his indebtedness

to Prof. C. S. Venable, LL.D., University of Virginia, to Prof. William Cain, C.E., University of North Carolina, and to Prof. E. S. Crawley, B.S., University of Pennsylvania, for assistance rendered in reading and revising manuscript, and for valuable suggestions given.

E. W. NICHOLS.

LEXINGTON, VA.

January, 1898.

CONTENTS.

PART I. - PLANE ANALYTIC GEOMETRY.

CHAPTER I.

	CO-ORDIN ATES.	
ARTS.	Pa	GES
1-3.	The Cartesian or Bilinear System. Examples	1
4-6.	The Polar System. Examples	4
	CHAPTER II.	
	LOCI.	
7.	Locus of an Equation. The Equation of a Locus	9
8.	Variables. Constants. Examples	10
9,	Relationship between a Locus and its Equation	11
10-16.	Discussion and Construction of Loci. Examples	11
17, 18.	Methods of Procedure. Examples	23
	CHAPTER III.	
	THE STRAIGHT LINE.	
19.	The Slope Equation. Examples	25
20.	The Symmetrical Equation. Examples	29
21.	The Normal Equation	32
22.	Perpendicular Distance of a Point from a Line. Ex-	
	amples	33
23.		35
24.		37
25.		38
26.		400
2.000	amples	39
27.	Length of Line joining Two Points. Examples	41

CONTENTS.

vi

ARTS.	PAGES
28.	Intersection of Two Lines. Examples 42
29.	Ax + By + C + K (A'x + B'y + C') = 0
30.	Angle between Two Lines. Examples. General Ex-
S4117	amples
	CHAPTER IV.
	TRANSFORMATION OF CO-ORDINATES.
	Objects of. Illustration 50
31. 32.	From One System to a Parallel System. Examples 51
33.	System to Another System also Rectangular. Examples. 53
	Rectangular System to a Polar System. From a Polar
34, 35.	System to a Rectangular System. Examples. General
	System to a Rectangular System.
	Examples
	CHAPTER V.
	THE CINCLE.
36, 37,	Generation of Circle. Equation of Circle 59
38.	General Equation of Circle, Concentric Circles, Ex-
39.	amples
40.	Supplemental Chords
41.	Tangent. Sub-tangent
42.	Normal. Sub-normal
43.	General Equations of Tangent and Normal. Examples . 68
44.	Length of Tangent
45, 46,	Radical Axis. Radical Centre. Examples 70
47.	Condition that a Straight Line touch a Circle. Slope
***	Equation of Tangent
48.	Chord of Contact
49, 50,	Pole and Polar
51.	Conjugate Diameters, Examples. General Examples . 77
01.	Conjugate Dismeters, Examples. General Examples
	CHAPTER VI.
	THE PARABOLA.
52, 53.	
	tions
54.	Construction of Parabola
55.	Latus-Rectum. Examples 86

	CONTENTS.	vii
ARTS.		PAGES
56.	Polar Equation of Parabola	88
57-59.	Tangent. Sub-tangent. Construction of Tangent	89
60, 61.	Normal. Sub-normal	90
62.	Tangents at Extremities of Latus-Rectum	91
63.	$x^{\frac{1}{2}} + y^{\frac{1}{2}} = + a^{\frac{1}{2}}$. Examples	92
64.		95
65.	Condition that a Straight Line touch the Parabola. Slope Equation of Tangent	95
66.	Locus of Intersection of Tangent and Perpendicular from	
	Focus	96
67.	Locus of Intersection of Perpendicular Tangents	97
68.	Chord of Contact	97
69.	Pole and Polar	98
70.		98
71, 72,	Parameter of any Diameter. Equation of a Diameter .	100
73.	Tangents at the Extremities of a Chord. Examples.	100
	General Examples	101
	CHAPTER VII. THE ELLIPSE.	
74, 75.	Generation of Ellipse. Definition. Equation of Ellipse .	106
76, 77.	Eccentricity. Focal Radii	108
78.	Construction of Ellipse	109
0.5550	Latus-Rectum. Examples	111 ·
80.	Polar Equation of Ellipse	118
81.	Supplemental Chords	114
82, 83,	Tangent. Sub-tangent	115
84.	Tangent and Line through Point of Tangency and	110
	Centre	118
85.	Methods of constructing Tangents	118
86, 87.	Normal. Sub-normal. Examples	119
88.	Normal bisects Angle between the Focal Radii	122
. 89.	Condition that a Straight Line touch the Ellipse. Slope Equation of Tangent	123
90.	Locus of Intersection of Tangent and Perpendicular from Focus	124
91.	Locus of Intersection of Perpendicular Tangents	125
92.	Equation of Chord of Contact	125
98.	Pole and Polar	126
94	Conjugate Diameters	126