INTRACELLULAR PANGENESIS; PP. 1-211

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649615155

Intracellular Pangenesis; pp. 1-211 by Hugo de Vries

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

HUGO DE VRIES

INTRACELLULAR PANGENESIS; PP. 1-211

Trieste

Intracellulare Pangenesis.

Von

Hugo de Vries, ord. Prof. der Botanik an der Universität von Amsterdam.

An organic being is a microcoam, a little universe, formed of a host of selfpropagating organisme, inconceivably minute and numerous as the stars in heaven.

22.10

Darwin, Pangenesis.

Jena.

Verlag von Gustav Fischer. 1889.

Einleitung.

Im Jahre 1868 hat Darwin, im zweiten Bande seines berühmten Werkes The variation of animals and plants under domestication, die provisorische Hypothese der Pangenesis aufgestellt. Der Erörterung dieser Hypothese geht eine meisterhafte Uebersicht über die zu erklärenden Erscheinungen voran. Durch diese, so wie durch die klare Auffassung des ganzen Problems, hat dieser Abschnitt seines Buches die allgemeine Aufmerksamkeit auf sich gezogen. In fast allen Werken, welche allgemeine biologische Fragen berühren, finden wir ihn besprochen. Während aber der allgemeine Theil des Abschnittes bis jetzt die Grundlage für alle wissenschaftlichen Betrachtungen über die Natur der Erblichkeit geblieben ist, hat sich die Hypothese selbst einer so allgemeinen Anerkennung nicht erfreut.

Darwin geht davon aus (Variation II S. 369), dass allgemein angenommen werde, dass die Zellen sich durch Theilung vermehren und dass sie dabei im Wesentlichen dieselbe Natur behalten. Dieser Satz bildet für ihn die Grundlage der Erblichkeit. Aus ihm lassen sich aber nicht sämmtliche, von Darwin zusammengestellte Gruppen 1

de Vries, Intracellulare Pangenesis.

von Erscheinungen erklären. Namentlich nicht die Wirkungen von Gebrauch und Nichtgebrauch, die direkte Einwirkung des männlichen Elementes auf das weibliche und die Eigenschaften derPropfhybride. Um diesen Erscheinungen Rechnung zu tragen, nimmt **Darwin** an, dass neben der Zelltheilung noch eine andere Art der Uebertragung erblicher Eigenschaften bestehe. Jede Einheit des Körpers gebe kleinste Theilchen ab, welche sich in den Keimzellen und Knospen ansammeln. Diese Theilchen seien die Träger der Eigenschaften derjenigen Zellen, von denen sie stammen, und bringen diese somit auf die Keimzellen und Knospen über.

In den Eizellen, Pollenkörnern, Spermazellen und Knospen seien somit die sämmtlichen erblichen Eigenschaften des Organismus durch kleinste Theilchen vertreten. Diese haben sie theils durch ihre Abstammung aus früheren Keimzellen, also auf direktem Wege, theils aber durch spätere Zufuhr aus den Zellen und Organen des Körpers erhalten. Diese kleinsten Theilchen sind nicht die chemischen Moleküle, sie sind viel grösser wie diese und eher mit den kleinsten bekannten Organismen zu vergleichen. Darwin giebt ihnen den Namen gemmules, Keimchen.

Die Annahme dieser Keimchen warf auf eine Reihe von bis dahin vollständig dunklen Thatsachen ein unerwartetes Licht. Und wenn man **Darwin's** Auseinandersetzungen aufmerksam liest, so sieht man immer deutlicher ein, dass für ganze grosse Gruppen von Erscheinungen die Uebertragung der Keimchen bei der Zelltheilung, von der Mutterzelle auf ihre Tochterzellen, völlig ausreicht. Nur einzelne Gruppen von Thatsachen fordern daneben die Transport-Hypothese. Namentlich die Lehre von den latenten Eigenschaften und vom Atavismus wird durch **Dar**- win's Hypothese aus ihrem früheren Dunkel hervorgerufen, und seine Besprechung dieses Gegenstandes (S. 368) zeigt klar, welche grosse Bedeutung er diesem Umstande beilegte. Sie fordert aber offenbar nur die Uebertragung der Keimchen bei der Zelltheilung, nicht den Transport aus den wachsenden und erwachsenen Organen nach den Keimzellen.

Mir hat es immer geschienen, dass die meisten Schriftsteller diese beiden Seiten der Hypothese nicht hinreichend auseinander gehalten haben, und dass ihre Einwürfe gegen die Annahme eines Transportes sie dazu verführt haben, die prinzipielle Bedeutung der Keimchenlehre zu übersehen.

Für mich besteht **Darwin**'s provisorische Hypothese der Pangenesis aus den beiden folgenden Sätzen:

 In jeder Keimzelle (Eizelle, Pollenkorn, Knospe u. s. w.) sind die einzelnen erblichen Eigenschaften des ganzen Organismus durch bestimmte stoffliche Theilchen vertreten. Diese vermehren sich durch Theilung und gehen bei der Zelltheilung von der Mutterzelle auf ihre Töchter über.

2. Ausserdem werfen die sämmtlichen Zellen des Körpers zu verschiedenen Zeiten ihrer Entwickelung solche Theilchen ab; diese fliessen den Keimzellen zu und übertragen auf diese die ihnen etwa fehlenden Eigenschaften des Organismus (Transporthypothese).

Die zweite Annahme hatte auch für Darwin bei Pflanzen und Korallen nur eine beschränkte Tragweite, indem er einen Transport von Keimchen aus dem einen Aste in den andern nicht für möglich hielt. Auf die Arbeiterinnen der Ameisen und Bienen hatte sie keine Anwendung. Ebensowenig auf die von Darwin mehrfach besprochenen gefüllten Levkojen, welche ja selbst keine Staubfäden und Fruchtanlagen besitzen und deren Eigenschaften 1* somit durch die ungefüllten, fertilen Exemplare der Raçe von der einen Generation auf die andere übertragen werden müssen. Und die Thatsachen, für deren Erklärung die fragliche Annahme aufgestellt wurde, haben in den zwanzig Jahren seit dem Erscheinen des **Darwin**'schen Buches weder an Zahl noch an Sicherheit gewonnen.

Zweifel an ihrer Nothwendigkeit sind somit wohl erlaubt. Es ist ein Hauptverdienst Welsmann's, diese Zweifel wiederholt betont und die ziemlich allgemein angenommene Lehre von der Erblichkeit erworbener Eigenschaften erschüttert zu haben ¹).

Lässt man aber mit diesem Forscher die zweite Annahme fallen, so ist damit noch kein Grund gegeben, auch den andern Theil der Hypothese der Pangenesis anzuzweifeln. Im Gegentheil, es scheint mir, dass dadurch seine prinzipielle Bedeutung nur klarer zu Tage tritt. Auch sind überzeugende Einwände gegen diesen ersteren Satz bis jetzt nicht vorgebracht worden, und keine andere Hypothese über das Wesen der Erblichkeit trägt den Thatsachen in so einfacher und klarer Weise Rechnung als diese.

Dennoch haben die meisten Schriftsteller mit der Transporthypothese auch jene von den stofflichen Trägern der einzelnen erblichen Eigenschaften als von selbst widerlegt betrachtet und ihr kaum eine besondere Besprechung gewidmet. Leider hat dadurch **Darwin's** Ansicht nicht diejenigen Früchte für die Entwickelung unseres Wissens

- 4 -

¹) Die Bezeichnung "erworben" ist nicht grade glücklich gewählt. Es handelt sich um die Frage: ob Eigenschaften, welche in somatischen Zellen entstanden sind, den Keinzellen mitgetheilt werden können. Diese Möglichkeit wird von Weismann abgewiesen. Man vergleiche den letzten Abschnitt des zweiten Theiles § 5.

getragen, welche ihr Urheber mit vollem Recht davon erwartet hatte.

5

Es soll nun im vorliegenden Aufsatz meine Aufgabe sein, den Grundgedanken der Pangenesis, abgeschieden von der Transporthypothese, auszuarbeiten und mit den neuen Thatsachen, welche die Lehre von der Befruchtung und die Anatomie der Zelle zu Tage gefördert haben, zu verbinden.

Als Richtschnur betrachte ich dabei den Gedanken, dass die Physiologie der Erblichkeit, und namentlich die Lehre von der Variabilität und dem Atavismus die zu erklärenden Erscheinungen anweisen, während die mikroskopische Erforschung der Zelltheilung und der Befruchtung uns das morphologische Substrat jener Vorgänge kennen lehren. Nicht die morphologischen Einzelheiten jener Vorgänge soll man zu erklären suchen, dazu ist unsere Kenntniss noch viel zu beschränkt. Aber im Einzelnen das stoffliche Substrat der physiologischen Prozesse aufzufinden, das sei, nach **Darwin's** Vorgang, unsere Aufgabe!

ï

Als wichtigstes Ergebniss der Zellenforschung der letzten Jahrzehnte betrachte ich den Satz, dass im Zellkern alle erblichen Anlagen des Organismus vertreten sein müssen. Ich werde zu zeigen versuchen, dass dieser Satz uns dazu führt, einen Transport von stofflichen Theilchen anzunehmen, welche Träger der einzelnen erblichen Eigenschaften sind. Jedoch nicht einen Transport durch den ganzen Organismus, oder auch nur von einer Zelle zur andern, sondern beschränkt in den Grenzen der einzelnen Zellen. Vom Kerne aus werden die stofflichen Träger der erblichen Eigenschaften den Organen des Protoplasten zugeführt. In den Kernen sind sie zumeist inaktiv, in den übrigen Organen der Protoplaste können sie aktiv werden. Im Kerne sind alle Eigenschaften vertreten, im Protoplasma jeder Zelle nur eine beschränkte Zahl.

6 -

Die Hypothese wird somit zur intracellularen Pangenesis. Und die kleinsten Theilchen, welche je Eine erbliche Eigenschaft vertreten, werde ich, weil mit der Bezeichnung "Keimchen" die Vorstellung eines Transportes durch den ganzen Organismus verbunden ist, mit einem neuen Namen belegen und Pangene nennen.