THE OUTLINES OF QUATERNIONS

Published @ 2017 Trieste Publishing Pty Ltd

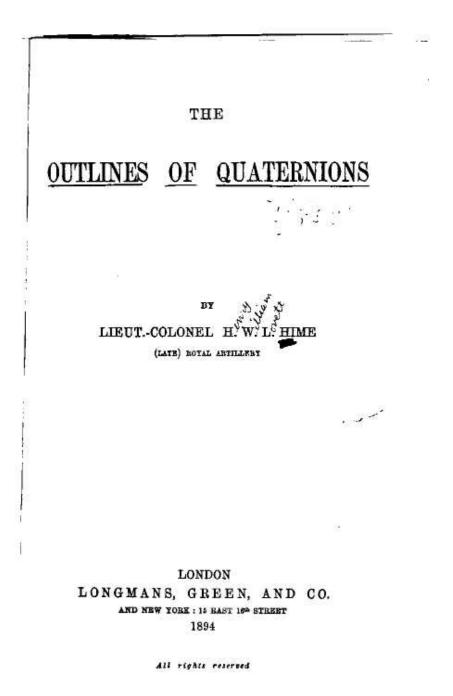
ISBN 9780649666140

The Outlines of Quaternions by H. W. L. Hime

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017


This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

H. W. L. HIME

THE OUTLINES OF QUATERNIONS

Trieste

CONTENTS

PART I

SUBTRACTION AND ADDITION OF VECTORS

OHATTER I

15

FIRST PRINCIPLES OF VECTORS

SECTION 1

The Nature of a Vector

1°. Definition of a vector .					• •				1
2°. A vector implies an operation	ation o	f tra	nsfer	ence.	૿ૺૼૼૼૼ				1
3°. Actual and null vectors		19	1	1000	10	<u>_</u> 22			2
4º. A vector implicitly involv	es thre	e nu	mber	8 .	13			÷	2
5°. Distinction between a ver	ctor an	dar	adius	vecto	r	÷		23	2
6°. Opposite, coinitial, succes	sive, co	plan	ar, an	d dipl	anar	ve	stor	18	2

SECTION 2

Equality and Inequality of Vectors

7°.	Definition of equal vectors		s - 2	0	•	20	\mathbf{r}	•	20	2
8°,	Example of equal vectors	S. 1		18	Ĩ					3
9°.	All equal vectors are denote	d by	the	Sat	ne sy	mbol	•	•	ł	3

SECTION 3

Subtraction and Addition of Two Vectors

10°.	Definition	of	the	e diff	ere	nce of any two vectors	35	3.4		ŧΰ	3
11°.			н	sum	of	two accessive vectors		÷	÷		4
12°.	0.00				39	any two vectors .				e	4

OUTLINES OF QUATERNIONS

ANT AND		PAGE
13° , $\alpha = -(-\alpha); -(+\alpha) = +(-\alpha) = -\alpha$	C.R	4
14°. Directions can be assigned to the sides of a plane triang such that the sum of two sides shall be equal to the thi		4
15°. Sum and difference of two coinitial sides of a parallelogra	m	5
SECTION 4		
Addition and Subtraction of Vectors in general.		
16°. Definition of the sum of any number of vectors .	×	5
17º The subtraction and addition of reators are acceptible a	he	

SECTION 5

Coefficients of Vectors

18°. za \pm ya = (x \pm y)a; z()	yα) =	= (<i>xy</i>))a =	zya .			-		2	6	
19°. The quotient of two par	allel	vecto	rs is	a nur	nber	<u>)</u> ş	3	į.	23	6	
20°. Paraliel vectors have the	68.00	ie rat	io as	their	leng	ths			¥.	7	
21°, $a(a \pm \beta) = aa \pm a\beta$	83	÷	32		18	÷	3	ł	÷	7	

SECTION 6

Scalars, Unit-Vectors, and Tensors

22°.	Definition	of	3 5	scalar		1997 - 18	12	•	8	80	 æ	8
23°.	м	10	. 1	anit-ve	otor	and a	tenac	т.		28	 •	8
24°.	Distinctio	n t	oty	ween a	scal	ar and	a ter	SOL				8

CHAPTER II

ON POINTS AND VECTOES IN & GIVEN PLANE

SECTION 1

Linear Equations connecting Two Vectors

25°.	If	pa +	$q\beta =$	0,	and	ps	and q	have	real	and	actua	l va	lac	8,	1228
		then	a B		(C. 13	ê			+	+	3		•	+	10
260.	If	pa +	qβ =	0,	and	a at	nd B r	are ob	lique	; the	en p =	0, 9	-	0	10

SECTION 2

Linear Equations connecting Three Vectors

27°. If	$la + m\beta + n\gamma = 0, a, \beta, \gamma$ are coplanar	1
28°. If	$la + m\beta + n\gamma = 0$, and a, β , γ terminate in a straight	
이번 아이지	line; then $l + m + n = 0$	2

vi

CONTENTS

ABT. 29°.	Anharmonic and	harmon	ic se	ction	of	ve	cto	7 8		3 4	×.	. 3		18
30°.	(a) Investigation	of the	equa	ation	la	+	mβ	+	ħγ	= 0	. 11	hen	6	
	l+m+n≠0		10										. 1	14
	(b) The equation	of the	six s	agma	nts			2		2 ⁰⁰	3	1		15
	(o) On the sign of	f geom	etric	figur	68		- 23		i.	16		. 8		15
31º.	Investigation of	the equ	ation	1 4 +	8	ŧ.	y =	0		4	ų.		: 8	16

CHAPTER III

ILLUSTRATIONS IN COPLANAR VECTORS

CHAPTER IV

ON POINTS AND VECTORS IN SPACE

SECTION 1

The Mean Point

33°,	Definitions of the simple and complex mean points	25
34°.	The position of the mean point depends absolutely upon the configuration of the system .	25
\$5°.	The sum of the vectors drawn from the mean point to all the points of the system is zero	26
86°.	The projection of the mean point is the mean point of the projected system .	26

SECTION 2

Linear Equations connecting Four Noncoplanar Vectors

37°. Vector-diagonal of a parallelopiped	27
38°. If $\lambda a + l\beta + m\gamma + n\delta = 0$, and $\alpha, \beta, \gamma, \delta$ terminate in a plane; then $\lambda + l + m + n = 0$.	28
39°. Equation of a plane in terms of its intercepts on the Cartesian axes of coordinates .	29

vii

63

PART II

DIVISION AND MULTIPLICATION OF TWO VECTORS

CHAPTER J

FIRST PRINCIPLES OF QUATERNIONS

SECTION 1

Definitions

-200 (* 100 - 200 (200)		
1 ² . (a) Definition of a quaternion	a ⁱ	PAGE 30
(b) ""a ⁻¹		30
$(c) \frac{\beta}{a} = \beta a^{-1}; \ \beta a = \frac{\beta}{a^{-1}} $	*	30
(d) If $q = \frac{\beta}{\alpha}$, $q\alpha = \beta$; if $q' = \beta\alpha$, $q'\alpha^{-1} = \beta$.	÷	30
(s) Definition of the angle of a quaternion		31
(f) ", ", plane of a quaternion		31
(g) " " " coplanar quaternions	2	31
(h) " " diplanar quaternions	2	31
(i) $\frac{\delta}{a} \pm \frac{\gamma}{a} = \frac{\delta \pm \gamma}{a}$, sec	•	31
(j) Miscellaneous definitions	14	31

SECTION 2

The Nature of a Quaternion

2°.	(@)	Nature	of th	e symbol	P		÷		9		÷	÷		÷		8	31	
	(b)	**		symbol	ßa	52		÷		ą.	2				R.		32	<i></i>
30	. The	operati	ion of	tension	° ;		13		93		-	3		12		12	33	
4°.		39	.,,	version				÷.		ŝ.	3		÷.		4		33	
	(4)	The na	ture o	f a verso	г.		42		÷		***	æ		a.		36	33	
	(b)	Positive	and	negative	rot	atio	n	•		÷	38				*	÷7	34	
	(0)	Symbol	ic`exp	ression o	£ a	ver	or		æ		×	æ		×			34	
	(d)	A verse	or imp	licitly in	volv	res t	hr	ee	nu	mt	ers				•		36	
5°.				licitly in													36	1

viii

11 E 1818

.

CONTENTS

1

CHAPTER II

THE PROPERTIES OF A SYSTEM OF THREE MUTUALLY RECTANGULAR UNIT-VECTORS, i, j, ž

6°. Definition of the functi	on of a	unit-ve	ector, in	n the fi	rst por	wer,	PAGE
as a versor	•	(e) (e)		•			37
$T^{\circ}. ij = k; ij \neq ji; j(-k)$) = -	jk .	÷.	a na	100	÷.	37
8°. $i(j \pm k) = ij \pm ik$.	15	8 8	8 - 36	86 - B	÷ .	. I	38
${}^{\circ}9^{\circ}, \frac{i}{i} = -k; \frac{j}{i} = k$.	• •		2		(35)		38
10° , $ijk = i^{\circ} = j^{\circ} = k^{\circ} = -$	1; ijk	≠ ikj	; - j ²	≠ (-j)*	8 H	39
11°. Real geometric signific	stion o	đ√-	1	• •	1949)		40
$12^{\circ}, \frac{1}{i} = -i$		•	1 ğ	•			41
13°. $\frac{1}{a} = \frac{-Ua}{Ta}$. Graphic r	eprese	ntation	of a	vector	and	its	
reciprocal .	a 4		÷.	÷	12	33	41
$14^{\circ}, \ i\frac{1}{i} = \frac{1}{i}i . .$		8 N	6 72	2	8	• •	42

CHAPTER III

THE VARIOUS FORMS OF A QUATERNION

SECTION 1

A Quaternion as the Product of a Tensor and a Versor

15°. $q = TqUq = UqTq$		•				÷.			4	43
16°. U (Uq) = Uq .	55	12	<u>с</u>	<u>_</u> 8	(* ini		6	ŝ		44

SECTION 2

A Quaternion as the Sum of a Scalar and a Vector

$17^{\circ}, q = 8$	q + Vq	10	* 10		.	*				10		6.8	44	
18°. Recap	itulation of	the	formu	læ of	179			. 1					48	
19°. On the	e symbol, e	os 0 -	+ e sin			÷	-						49	
20°. The st	m of a sca	lar az	d a v	ector	is a	quat	erni	on				1	49	
21º. Vecto	r multiplica	tion	is not	com	mat	ative	3		£	÷		14	50	
22°. 8aß =	± (αβ + β	:); V	αβ ==	1 (af	-1	Ba) .		3			4	Q.	50	
'23°. If Vg	= o, the or	nstit	uent v	recto	rs at	e par	alle	È i	2	24		15	50	
24°. The se	quare of a v	ector	is a r	negat	ive :	scalar		,					51	
	 18°. Recap 19°. On the 20°. The set 21°. Vecto 22°. Saβ = '23°. If Vq 	18°. Recapitulation of 19°. On the symbol, e 20°. The sum of a sca 21°. Vector multiplics 22°. $6\alpha\beta = \frac{1}{2}(\alpha\beta + \beta\alpha)$ '23°. If $\nabla q = 0$, the ou	19°. On the symbol, $\cos \theta = 20^{\circ}$. The sum of a scalar ar 21°. Vector multiplication 22°. $8\alpha\beta = \frac{1}{2}(\alpha\beta + \beta\alpha)$; V '23°. If $\nabla q = 0$, the constit	18°. Recapitulation of the formula? 19°. On the symbol, $\cos \theta + \epsilon \sin 20^\circ$. The sum of a scalar and a with 21°. Vector multiplication is not 22°. $8\alpha\beta = \frac{1}{2}(\alpha\beta + \beta\alpha)$; $V\alpha\beta = 23^\circ$. If $\nabla q = 0$, the constituent with 23°.	18°. Recapitulation of the formula of 19°. On the symbol, $\cos \theta + \epsilon \sin \theta$ 20°. The sum of a scalar and a vector 21°. Vector multiplication is not com 22°. $\operatorname{Sa\beta} = \frac{1}{2} (a\beta + \beta a); \operatorname{Va\beta} = \frac{1}{2} (a\beta$ '23°. If $\nabla q = 0$, the constituent vector	18°. Recapitulation of the formulæ of 17° 19°. On the symbol, $\cos \theta + \epsilon \sin \theta$. 20°. The sum of a scalar and a vector is a 21°. Vector multiplication is not commut 22°. $8\alpha\beta = \frac{1}{2}(\alpha\beta + \beta\alpha); V\alpha\beta = \frac{1}{2}(\alpha\beta - \beta)$ 23°. If $\nabla q = 0$, the constituent vectors an	18°. Recapitulation of the formulæ of 17° 19°. On the symbol, $\cos \theta + \epsilon \sin \theta$ 20°. The sum of a scalar and a vector is a quat 21°. Vector multiplication is not commutative 22°. $\operatorname{Sa\beta} = \frac{1}{2} (a\beta + \beta a); \operatorname{Va\beta} = \frac{1}{2} (a\beta - \beta a)$. 23°. If $\nabla q = 0$, the constituent vectors are par	18°. Recapitulation of the formulæ of 17° 19°. On the symbol, $\cos \theta + \epsilon \sin \theta$ 20°. The sum of a scalar and a vector is a quaterni 21°. Vector multiplication is not commutative 22°. $\operatorname{Sa\beta} = \frac{1}{2} (a\beta + \beta a); \operatorname{Va\beta} = \frac{1}{2} (a\beta - \beta a)$.	18°. Recapitulation of the formulæ of 17° 19°. On the symbol, $\cos \theta + \epsilon \sin \theta$ 20°. The sum of a scalar and a vector is a quaternion 21°. Vector multiplication is not commutative 22°. $6\alpha\beta = \frac{1}{2}(\alpha\beta + \beta\alpha)$; $\nabla\alpha\beta = \frac{1}{2}(\alpha\beta - \beta\alpha)$. 23°. If $\nabla q = 0$, the constituent vectors are parallel	18°. Recapitulation of the formulæ of 17° <td< td=""></td<>				

.

ix

OUTLINES OF QUATERNIONS

÷.,

25° . If Sq = 0, the constituent vectors	are	at rig	ht an	gles		ał.	51
26°. $\nabla a\beta$ represents the vector-area of coinitial sides are a and b .	the	paral	llelog	ram	who	se	51

SECTION 3

A Quaternion as the Power of a Vector

27°.	Definition of the function of a unit-vector, in any power, as a versor	52
28°.	The versors of the four quaternions of 17° as the powers of unit-vectors .	52
29°.	$\varepsilon^{-1} = \frac{1}{\varepsilon^4}; \ \varepsilon^{-1} \neq -\varepsilon^4; \ -\varepsilon^1 \neq (-\varepsilon)^4 \ , \qquad , \qquad , \qquad .$	53
30°.	The algebraic laws of indices apply to versors and quaternions	54
31°.	Geometric interpretation of Moivre's theorem	55
32°.	$\eta^{24} = \pm 1; \eta^{54+1} = \pm \eta$.	56
33°,	The power of a vector is a quaternion. The amplitude of a quaternion	56
34°.	Every quaternion may be represented by the power of a vector	57

SECTION 4

Quadrinomial Form of a Quaternion

35°.	$q = \pi$	+ 26	+ 10	+ sk	÷.	20 12				1.2			57
36°.	(a) Se		proof	that	vecto	or mul	tiplic	atic	n is	not o	omm	u-	
	tat	ive .	•					•					58
	(b) V	ector i	multip	plicat	ion is	distri	butive				390	•	58
	(c)	**				associ	ative						55
37°,	(a ± /	8) ^z =	a³ ± 5	28a,8	+ <i>B</i> ³ ,	&c., &	c			ē.			60
38°.	α βγ≠	$\frac{\alpha\gamma}{\beta};$	$\frac{a}{\beta}\beta =$	αβ β;	a B By≠	$\frac{\alpha\beta}{\beta\gamma}$	1982	ē.	ŝ				60
\$9°.	Funct	ions o	faq	uater	nion i	n quad	irinor	nial	for	n		e.	61

CHAPTER IV

EQUALITY AND INEQUALITY OF QUATERNIONS

10°.	(4)	•		ł.	•	¥3.				63							
	(b)	0	1 the	equality	of	two	tensors		5						ē	63	
	(0)						versors	•		•	8	83		•	ē.	63	

x