PRACTICAL PYROMETRY: THE THEORY, CALIBRATION, AND USE OF INSTRUMENTS FOR THE MEASUREMENT OF HIGH TEMPERATURES

Published @ 2017 Trieste Publishing Pty Ltd

ISBN 9780649678105

Practical Pyrometry: The Theory, Calibration, and Use of Instruments for the Measurement of High Temperatures by Ervin S. Ferry & Glenn A. Shook & Jacob R. Collins

Except for use in any review, the reproduction or utilisation of this work in whole or in part in any form by any electronic, mechanical or other means, now known or hereafter invented, including xerography, photocopying and recording, or in any information storage or retrieval system, is forbidden without the permission of the publisher, Trieste Publishing Pty Ltd, PO Box 1576 Collingwood, Victoria 3066 Australia.

All rights reserved.

Edited by Trieste Publishing Pty Ltd. Cover @ 2017

This book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, re-sold, hired out, or otherwise circulated without the publisher's prior consent in any form or binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser.

www.triestepublishing.com

PRACTICAL PYROMETRY: THE THEORY, CALIBRATION, AND USE OF INSTRUMENTS FOR THE MEASUREMENT OF HIGH TEMPERATURES

PRACTICAL PYROMETRY

THE THEORY, CALIBRATION AND USE OF IN-STRUMENTS FOR THE MEASUREMENT OF HIGH TEMPERATURES

BY

ERVIN S. FERRY
GLENN A. SHOOK JACOB R. COLLINS

SECOND EDITION REVISED

NEW YORK

JOHN WILEY & SONS, INC.

LONDON: CHAPMAN & HALL, LIMITED

1920

PREFACE

.0

1

L

The day is already past when foundrymen and steel workers depend upon the eye to judge the temperatures of their product in the various stages of its heat treatment, when makers of ceramic products depend upon the indication of fusible cones, and when operators of cold storage plants are content to observe numerous thermometers scattered throughout their establishments. The requirements of modern industrial processes and the severe competition of commercial enterprises now require not only more precise knowledge of temperatures, but in many cases also require a continuous automatic record of the temperature state extending over an interval of time.

Several years ago, anticipating the need by technical students of a Course in High Temperature Measurements, the work of testing the various methods and apparatus was begun. After three years devoted to this survey, a course was organized and offered. It was received with such favor that it was made a required subject in the plan of study for students of chemical engineering at Purdue University. Each year since then, a new edition of Notes, in mimeographed form, has been put into the hands of the students. It has now been thought proper to put into more readable and permanent form the results of this experience.

In the present book, the needs of three distinct classes of readers have been kept in mind — college students, technically trained men who deal with processes requiring high temperature measurements, and less trained observers who may make the measurements. For the first two classes, who require much fuller theoretical discussions than the latter, are developed in some detail the principles involved. In some cases the discussion of these principles involve physical and mathematical ideas beyond the training of the average observer. For the less trained observer

are given the physical principles and manipulative details with which he would require familiarity, many of which would have been omitted if the needs of only the more trained readers had been kept in mind.

At all times the publications, experience and advice of G. K. Burgess and the other members of the staff of the Bureau of Standards have been generously extended to us and freely used. We are glad to take the opportunity to thank them for their many courtesies.

All of the illustrations have been engraved especially for this book, but some of them are copies of catalogue plates of standard commercial apparatus.

E. S. F.

G. A. S.

J. R. C.

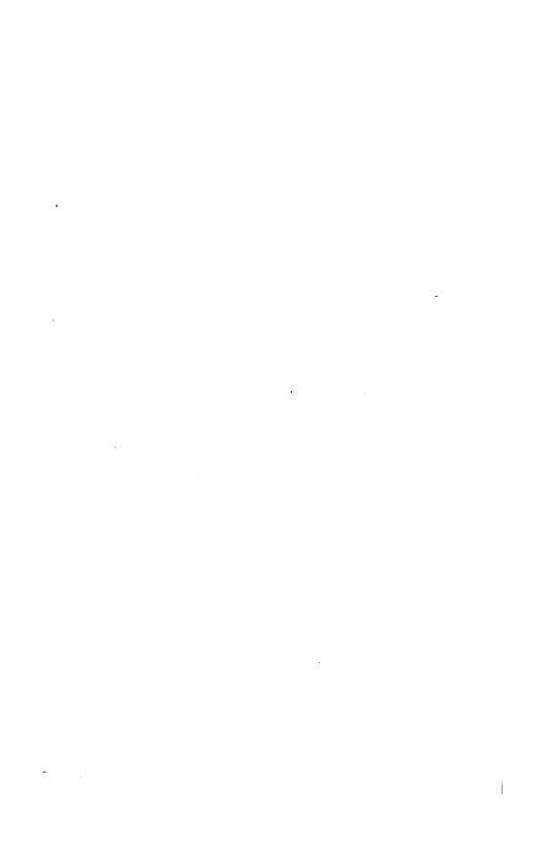
PHYSICS LABORATORY, PURDUE UNIVERSITY, La Fayette, Ind.

CONTENTS

CHAPTER I

	STANDARD TEMPERATURE SCALES	
AE		PAGE
1.	The Comparison of Temperatures	1
2.		2
3.	The Centigrade and Fahrenheit Degrees	3
4.		4
5.	The Ideal Gas Temperature Scale	- 5
6.	The Normal Thermometer	6
7.	The Black-body Temperature Scale	8
8.	The Application of the Three Standard Temperature Scales	10
	CHAPTER II	
224	RESISTANCE PYROMETRY	
9.	Relation between Resistance and Temperature	12
10.	[1] [1] [1] [1] [1] [1] [1] [1] [1] [1]	12
11.		14
12.	The Availability of Resistance Pyrometers to Industrial Use	15
13.	Recording Resistance Pyrometers	16
	Exp. 1. Calibration of a Resistance Pyrometer	20
	CHAPTER III	
	THERMOELECTRIC PYROMETRY	,
14.	The Seebeck Effect	24
15.	Application to Temperature Measurement	25
16.	Choice of Metals for Thermoelectric Couples	26
17.	The Construction of Thermoelectric Pyrometers	28
	Indicators for Thermoelectric Pyrometers	29
19.	Millivoltmeter Indicators	29
20.	The Potentiometer Method of Measuring Electromotive Forces	31
21.	Potentiometer Indicators for Thermoelectric Pyrometers	34
22.	The Deflection Potentiometer	35
23.	Recording Thermoelectric Pyrometers	38

CONTENTS


ART		PAGE	
	The Cold-Junction Correction	40	
25.	Cold-Junction Correction when the Temperature of the Cold- Junction is not Constant	49	
96	Shop Methods for Reducing the Errors Due to Variation in the	49	
	Temperature of the Cold Junction	51	
27.	Advantages and Disadvantages of the Thermoelectric Method of Measuring Temperatures	55	
28.	The Installation of Thermoelectric Pyrometers	56	
20.	Exp. 2. Calibration of a Thermoelectric Couple	58	
	Exp. 3. The Construction and Test of Thermoelectric Couples	62	
	Exp. 4. Determination of Temperatures by Means of a Thermo- electric Pyrometer with the Cold Junction not Maintained	02	
	at a Constant Temperature	66	
	of Steel	67	
	CHAPTER IV		
	RADIATION PYROMETRY		
1000		820	
	The Experimental Realization of Black-Body Radiation	71	
30.	The General Principles of Radiation Pyrometry	73	
	The Féry Thermoelectric Mirror Radiation Pyrometer	75	
32,	The Relation between the Energy Rate at a Point and the Distance		
	from the Source	79	
33.	The Féry Spiral Pyrometer	79	
34.	Fixed Focus Radiation Pyrometers.	80	
35.	The Foster and the Brown Fixed Focus Pyrometers	81	
	Thwing's Fixed Focus Radiation Pyrometer	82	
37.			
	Precautions in using Radiation Pyrometers	83 84	
٠.	Exp. 6. Calibration of a Radiation Pyrometer	85	
-	CHAPTER V		
	OPTICAL PYROMETRY		
2200		9225	
	Kirchhoff's Law	89	
	Wien's Distribution Law	90	
41.	The Thermodynamic Temperature Corresponding to a given Black-	1000	
	Body Temperature	91	
	The Equality of Brightness Method of Measuring Temperature	94	
43.	The General Optical Pyrometer Equation	97	
44.	The Color Identity Method of Measuring Temperature	100	
	Le Chatelier's Optical Pyrometer	100	

	Til .	(8)	
	CONTENTS	vii	
ART.		Page	
	The Féry Absorption Pyrometer	102	
	The Shore Pyroecope	103	
	The Holborn-Kurlbaum Optical Pyrometer	104	
49.	The Wanner Optical Pyrometer	105	
	The Wide Filament Pyrometer Comparison Lamp	107	
	Exp. 7. Calibration of a Le Chatelier Optical Pyrometer	108	
	Exp. 8. Calibration of a Wanner Optical Pyrometer	114	
	Exp. 9. Calibration of a Holborn-Kurlbaum Optical Pyrometer	122	
10	Exp. 10. Determination of the Melting Point of a Very Small Speci-		
	men of a Substance	126	
	Exp. 11. The Determination of the Relation between the Luminous		
	Intensity and the Temperature of an Incandescent Lamp		
	Filament	127	
	Exp. 12. Calibration of a Féry Absorption Pyrometer	131	
	Exp. 13. Calibration of a Color Identity Optical Pyrometer	133	
	Exp. 14. The Measurement of Actual Temperatures of a Gray Body	135	
	CONCLUSION		
51.	The Selection of Pyrometers for Particular Purposes	138	
	TABLES		
1. I	Boiling Point of Water under Different Barometric Pressures	141	
	Corrections for the Influence of Gravity in the Height of a Barometer	142	
	Values of log (tanº 8) for Use with the Wanner Optical Pyrometer	143	

The state of the

©. ##

*

